Advertisements
Advertisements
प्रश्न
The median of the following data is 525. Find the missing frequency, if it is given that there are 100 observations in the data:
Class interval | Frequency |
0 - 100 | 2 |
100 - 200 | 5 |
200 - 300 | f1 |
300 - 400 | 12 |
400 - 500 | 17 |
500 - 600 | 20 |
600 - 700 | f2 |
700 - 800 | 9 |
800 - 900 | 7 |
900 - 1000 | 4 |
उत्तर
Class interval | Frequency | Cumulative frequency |
0 - 100 | 2 | 2 |
100 - 200 | 5 | 7 |
200 - 300 | f1 | 7 + f1 |
300 - 400 | 12 | 19 + f1 |
400 - 500 | 17 | 36 + f1 |
500 - 600 | 20 | 56 + f1 |
600 - 700 | f2 | 56 + f1 + f2 |
700 - 800 | 9 | 65 + f1 + f2 |
800 - 900 | 7 | 72 + f1 + f2 |
900 - 1000 | 4 | 76 + f1 + f2 |
N = 100 |
Given median = 525
Then median class = 500 - 600
l = 500, f = 20, F = 36 + f1 and h = 600 - 500 = 100
Median `l+(N/2-F)/fxxh`
`rArr525=500+(50-(36+f1))/20xx100`
`rArr525-500=(50-36-f1)/20xx100`
⇒ 25 = (14 - f1) x 5
⇒ 25 = 70 - 5f1
⇒ 5f1 = 70 - 25
⇒ 5f1 = 45
⇒ f1 = 45/5 = 9
Given sum of frequencies = 100
⇒ 2 + 5 + f1 + 12 + 17 + 20 + f2 + 9 + 7 + 4 = 100
⇒ 2 + 5 + 9 + 12 + 17 + 20 + f2 + 9 + 7 + 4 = 100
⇒ 85 + f2 = 100
⇒ f2 = 100 - 85
⇒ f2 = 15
APPEARS IN
संबंधित प्रश्न
The mean of following numbers is 68. Find the value of ‘x’. 45, 52, 60, x, 69, 70, 26, 81 and 94. Hence, estimate the median.
An incomplete distribution is given as follows:
Variable: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 |
Frequency: | 10 | 20 | ? | 40 | ? | 25 | 15 |
You are given that the median value is 35 and the sum of all the frequencies is 170. Using the median formula, fill up the missing frequencies.
Calculate the missing frequency from the following distribution, it being given that the median of the distribution is 24.
Age in years | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
No. of persons | 5 | 25 | ? | 18 | 7 |
A student got the following marks in 9 questions of a question paper.
3, 5, 7, 3, 8, 0, 1, 4 and 6.
Find the median of these marks.
The weights (in kg) of 10 students of a class are given below:
21, 28.5, 20.5, 24, 25.5, 22, 27.5, 28, 21 and 24.
Find the median of their weights.
Find the median of the following frequency distribution:
x | 10 | 11 | 12 | 13 | 14 | 15 |
f | 1 | 4 | 7 | 5 | 9 | 3 |
Find the median of the following distribution:
Marks | 0 – 10 | 10 –20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Number of students | 5 | 8 | 20 | 15 | 7 | 5 |
The median of the following frequency distribution is 25. Find the value of x.
Class: | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency: | 6 | 9 | 10 | 8 | x |
The median of the following frequency distribution is 35. Find the value of x.
Class: | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency: | 6 | 3 | x | 12 | 19 |
Find the modal and median classes of the following distribution.
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 |
Frequency | 11 | 22 | 19 | 18 | 7 |