हिंदी

Find the angle between the following two lines: λr→=2i^-5j^+k^+λ(3i^+2j^+6k^) μr→=7i^-6k^+μ(i^+2j^+2k^) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the following two lines:

`vecr = 2hati - 5hatj + hatk + λ(3hati + 2hatj + 6hatk)`

`vecr = 7hati - 6hatk + μ(hati + 2hatj + 2hatk)`

योग

उत्तर

Angle between two vectors

`vecr = veca_1 + λvecb_1` and `vecr = veca_2 + μvecb_2` is given by

cos θ = `|(vecb_1 . vecb_2)/(|vecb_1||vecb_2|)|`

`vecr = (2hati - 5hatj + hatk) + λ(3hati + 2hatj + 6hatk)`

`veca_1 = 2hati - 5hatj + hatk, vecb_1 = 3hati + 2hatj + 6hatk`

`vecr = (7hati - 6hatk) + μ(hati + 2hatj + 2hatk)`

`veca_2 = (7hati - 6hatk), vecb_2 = hati + 2hatj + 2hatk`

Now `vecb_1 . vecb_2 = (3hati + 2hatj + 6hatk) . (hati + 2hatj + 2hatk)`

= 3 + 4 + 12

= 19

`|vecb_1| = sqrt(3^2 + 2^2 + 6^2)`

= `sqrt(49)`

= 7

`|vecb_2| = sqrt(1^2 + 2^2 + 2^2)`

= `sqrt(9)`

= 3

cos θ = `|b_1 . b_2|/(|b_1||b_2|)`

cos θ = `|19/(7 xx 3)|`

= `19/21`

θ = `cos^-1  19/21`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 2

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 - 5xy + 3y2 =0,

then show that 100(h2 - ab) = (a + b)2


Find the acute angle between the lines whose direction ratios are 5, 12, -13 and 3, - 4, 5.


Find the angle between the following pair of lines:

`vecr = 2hati - 5hatj + hatk + lambda(3hati - 2hatj + 6hatk) and vecr = 7hati - 6hatk + mu(hati + 2hatj + 2hatk)`


Find the angle between the following pair of lines:

`vecr = 3hati + hatj - 2hatk + lambda(hati - hatj - 2hatk) and vecr = 2hati - hatj -56hatk + mu(3hati - 5hatj - 4hatk)`


Find the angle between the following pairs of lines: 

`(x-2)/2 = (y-1)/5 = (z+3)/(-3)` and `(x+2)/(-1) = (y-4)/8 = (z -5)/4`


Find the angle between the following pairs of lines:

`x/y = y/2 = z/1` and `(x-5)/4 = (y-2)/1 = (z - 3)/8`


Find the angle between the lines whose direction ratios are a, b, c and b − c, c − a, a − b.


Find the angle between the line \[\vec{r} = \left( 2 \hat{i}+ 3 \hat {j}  + 9 \hat{k}  \right) + \lambda\left( 2 \hat{i} + 3 \hat{j}  + 4 \hat{k}  \right)\]  and the plane  \[\vec{r} \cdot \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 5 .\]

 

The line  \[\vec{r} = \hat{i} + \lambda\left( 2 \hat{i} - m \hat{j}  - 3 \hat{k}  \right)\]  is parallel to the plane  \[\vec{r} \cdot \left( m \hat{i}  + 3 \hat{j}  + \hat{k}  \right) = 4 .\] Find m

 

Show that the line whose vector equation is \[\vec{r} = 2 \hat{i}  + 5 \hat{j} + 7 \hat{k}+ \lambda\left( \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right)\] is parallel to the plane whose vector  \[\vec{r} \cdot \left( \hat{i} + \hat{j}  - \hat{k}  \right) = 7 .\]  Also, find the distance between them.

  

Find the angle between the line \[\frac{x - 2}{3} = \frac{y + 1}{- 1} = \frac{z - 3}{2}\] and the plane

3x + 4y + z + 5 = 0.

  

Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right) = 1\] and the line whose vector equation is  \[\vec{r} = \left( - \hat{i}  + \hat{j} + \hat{k}  \right) + \lambda\left( 2 \hat{i}  + \hat{j}  + 4 \hat{k}  \right)\]   are parallel. Also, find the distance between them. 


Find the angle between the line

\[\frac{x + 1}{2} = \frac{y}{3} = \frac{z - 3}{6}\]  and the plane 10x + 2y − 11z = 3.
 

Write the angle between the line \[\frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z + 3}{- 2}\]  and the plane x + y + 4 = 0. 

 

 Find the angle between the two lines `2x = 3y = -z and 6x =-y = -4z`


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0.


`vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)` and `vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)`


`vecr = 3hati + hatj + 2hatk + l(hati - hatj + 2hatk)` and `vecr = 2hati + hatj + 56hatk + m(3hati - 5hatj + 4hatk)`


The angle between two lines `(x + 1)/2 = (y + 3)/2 = (z - 4)/(-1)` and `(x - 4)/1 = (y + 4)/2 = (z + 1)/2` is ______.


The angle between the lines 2x = 3y = – z and 6x = – y = – 4z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×