हिंदी

Write the Angle Between the Line X − 1 2 = Y − 2 1 = Z + 3 − 2 and the Plane X + Y + 4 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the angle between the line \[\frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z + 3}{- 2}\]  and the plane x + y + 4 = 0. 

 
योग

उत्तर

\[\text{ The given line is parallel to the vector }  \vec{b} = \hat{i}  + 2 \hat{j}  + 2 \hat{k}  \text{ and the given plane is normal to the vector }  \vec{n} = \hat{i}  + \hat{j}  + 0 \hat{k}  . \]

\[\text{ We know that the angle } \theta \text{ between the line and the plane is given by } \]

\[\sin \theta = \frac{\vec{b} . \vec{n}}{\left| \vec{b} \right| \left| \vec{n} \right|}\]

\[ = \frac{\left( \hat{i}  + 2 \hat{j}  + 2 \hat{k}  \right) . \left( \hat{i} + \hat{j}  + 0 \hat{k}  \right)}{\left| \hat{i}+ 2 \hat{j} + 2 \hat{k} \right| \left| \hat{i}  + \hat{j} + 0 \hat{k}  \right|} = \frac{1 + 2 + 0}{\sqrt{1 + 4 + 4} \sqrt{1 + 1 + 0}} = \frac{3}{3 \sqrt{2}} = \frac{1}{\sqrt{2}}\]

\[ \Rightarrow \theta = \sin^{- 1} \left( \frac{1}{\sqrt{2}} \right) = {45}^o \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Very Short Answers [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Very Short Answers | Q 17 | पृष्ठ ८४

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 - 5xy + 3y2 =0,

then show that 100(h2 - ab) = (a + b)2


Find the acute angle between the lines whose direction ratios are 5, 12, -13 and 3, - 4, 5.


Find the angle between the following pair of lines:

`vecr = 3hati + hatj - 2hatk + lambda(hati - hatj - 2hatk) and vecr = 2hati - hatj -56hatk + mu(3hati - 5hatj - 4hatk)`


Find the angle between the following pairs of lines: 

`(x-2)/2 = (y-1)/5 = (z+3)/(-3)` and `(x+2)/(-1) = (y-4)/8 = (z -5)/4`


Find the angle between the lines whose direction ratios are a, b, c and b − c, c − a, a − b.


Find the angle between the line \[\vec{r} = \left( 2 \hat{i}+ 3 \hat {j}  + 9 \hat{k}  \right) + \lambda\left( 2 \hat{i} + 3 \hat{j}  + 4 \hat{k}  \right)\]  and the plane  \[\vec{r} \cdot \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 5 .\]

 

Find the angle between the line \[\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z + 1}{1}\]  and the plane 2x + y − z = 4.

  

The line  \[\vec{r} = \hat{i} + \lambda\left( 2 \hat{i} - m \hat{j}  - 3 \hat{k}  \right)\]  is parallel to the plane  \[\vec{r} \cdot \left( m \hat{i}  + 3 \hat{j}  + \hat{k}  \right) = 4 .\] Find m

 

Show that the line whose vector equation is \[\vec{r} = 2 \hat{i}  + 5 \hat{j} + 7 \hat{k}+ \lambda\left( \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right)\] is parallel to the plane whose vector  \[\vec{r} \cdot \left( \hat{i} + \hat{j}  - \hat{k}  \right) = 7 .\]  Also, find the distance between them.

  

Find the angle between the line \[\frac{x - 2}{3} = \frac{y + 1}{- 1} = \frac{z - 3}{2}\] and the plane

3x + 4y + z + 5 = 0.

  

State when the line \[\vec{r} = \vec{a} + \lambda \vec{b}\]  is parallel to the plane  \[\vec{r} \cdot \vec{n} = d .\]Show that the line  \[\vec{r} = \hat{i}  + \hat{j}  + \lambda\left( 3 \hat{i}  - \hat{j}  + 2 \hat{k}  \right)\]  is parallel to the plane  \[\vec{r} \cdot \left( 2 \hat{j} + \hat{k} \right) = 3 .\]   Also, find the distance between the line and the plane.

 
 

Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right) = 1\] and the line whose vector equation is  \[\vec{r} = \left( - \hat{i}  + \hat{j} + \hat{k}  \right) + \lambda\left( 2 \hat{i}  + \hat{j}  + 4 \hat{k}  \right)\]   are parallel. Also, find the distance between them. 


Find the angle between the line

\[\frac{x + 1}{2} = \frac{y}{3} = \frac{z - 3}{6}\]  and the plane 10x + 2y − 11z = 3.
 

 Find the angle between the two lines `2x = 3y = -z and 6x =-y = -4z`


Find the angle between the lines whose direction cosines are given by the equations: 3l + m + 5n = 0 and 6mn – 2nl + 5lm = 0.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


If l1, m1, n1; l2, m2, n2; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.


`vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)` and `vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)`


The angle between two lines `(x + 1)/2 = (y + 3)/2 = (z - 4)/(-1)` and `(x - 4)/1 = (y + 4)/2 = (z + 1)/2` is ______.


The angle between the lines 2x = 3y = – z and 6x = – y = – 4z is ______.


Find the angle between the following two lines:

`vecr = 2hati - 5hatj + hatk + λ(3hati + 2hatj + 6hatk)`

`vecr = 7hati - 6hatk + μ(hati + 2hatj + 2hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×