हिंदी

If l1, m1, n1; l2, m2, n2; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + - Mathematics

Advertisements
Advertisements

प्रश्न

If l1, m1, n1; l2, m2, n2; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.

योग

उत्तर

Let `vec"a", vec"b", vec"c"` and `vec"d"` are such that

`vec"a" = l_"i"hat"i" + "m"_1hat"i" + "n"_1hat"k"`

`vec"b" = l_2hat"i" + "m"_2hat"j" + "n"_2hat"k"`

`vec"c" = l_3hat"i" + "m"_3hat"j" + "n"_3hat"k"`

And `vec"d" = (l_1 + l_2 + l_3)hat"i" + ("m"_1 + "m"_2 + "m"_3)hat"j" + ("n"_1 + "n"_2 + "n"_3)hat"k"`

Since the given d’cosines are mutually perpendicular then

l1l2 + m1m2 + n1n2 = 0

l2l3 + m2m3 + n2n3 = 0

l1l3 + m1m3 + n1n3 = 0

Let α, β and ϒ be the angles between `vec"a"` nad `vec"d"`, `vec"b"` and `vec"d"`, `vec"c"` and `vec"d"` respectively.

∴ `cos alpha = l_1(l_1 + l_2 + l_3) + m_1(m_1 + m_2 + m_3) + n_1(n_1 + n_2 + n_3)`

= `l_1^2 + l_1l_2 + l_1l_3 + m_1^2 + m_1m_2 + m_1m_3 + n_1^2 + n_1n_2 + n_1n_3`

= `(l_1^2 + m_1^2 + n_1^2) + (l_1l_2 + m_1m_2 + n_1n_2) + (l_1l_3 + m_1m_3 + n_1n_3)`

= 1 + 0 + 0

= 1

∴ `cos beta = l_2(l_1 + l_2 + l_3) + m_2(m_1 + m_2 + m_3) + n_2(n_1 + n_2 + n_3)`

= `l_1l_2 + l_2^2 + l_2l_3 + m_1m_2 + m_2^2 + m_2m_3 + n_1n_2 + n_2^2 + n_2n_3`

= `(l_2^2 + m_2^2 + n_2^2) + (l_1l_2 + m_1m_2 + n_1n_2) + (l_2l_3 + m_2 +m_3 + n_2n_3)`

= 1 + 0 + 0

= 1

Similarly,

∴ `cos ϒ = l_2(l_1 + l_2 + l_3) + m_2(m_1 + m_2 + m_3) + n_2(n_1 + n_2 + n_3)`

= `l_1l_3 + l_2 +l_3 + l_3^2 + m_1m-3 + m_2m_3 + m_3^2 + n_1n_3 + n_2n_3 + n_3^2`

= `(l_3^2 + m_3^2 + n_3^2) + (l_1_3 + m_1 + m_3 + n_1n_3) + (l_2l_3 + m_2 + m_3 + n_2 n_3)`

= 1 + 0 + 0

= 1

∴ `cos alpha = cos beta = cos ϒ` = 1

⇒ α = β = ϒ which is the required result.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Three Dimensional Geometry - Exercise [पृष्ठ २३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 11 Three Dimensional Geometry
Exercise | Q 28 | पृष्ठ २३७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Find the acute angle between the lines whose direction ratios are 5, 12, -13 and 3, - 4, 5.


Find the angle between the following pair of lines:

`vecr = 3hati + hatj - 2hatk + lambda(hati - hatj - 2hatk) and vecr = 2hati - hatj -56hatk + mu(3hati - 5hatj - 4hatk)`


Find the angle between the following pairs of lines: 

`(x-2)/2 = (y-1)/5 = (z+3)/(-3)` and `(x+2)/(-1) = (y-4)/8 = (z -5)/4`


Find the angle between the following pairs of lines:

`x/y = y/2 = z/1` and `(x-5)/4 = (y-2)/1 = (z - 3)/8`


Find the values of p so the line `(1-x)/3 = (7y-14)/2p = (z-3)/2` and `(7-7x)/(3p) = (y -5)/1 = (6-z)/5` are at right angles.


Find the angle between the lines whose direction ratios are a, b, c and b − c, c − a, a − b.


The measure of the acute angle between the lines whose direction ratios are 3, 2, 6 and –2, 1, 2 is ______.


Find the angle between the line \[\vec{r} = \left( 2 \hat{i}+ 3 \hat {j}  + 9 \hat{k}  \right) + \lambda\left( 2 \hat{i} + 3 \hat{j}  + 4 \hat{k}  \right)\]  and the plane  \[\vec{r} \cdot \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 5 .\]

 

Find the angle between the line \[\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z + 1}{1}\]  and the plane 2x + y − z = 4.

  

Find the angle between the line joining the points (3, −4, −2) and (12, 2, 0) and the plane 3x − y + z = 1.

 

Show that the line whose vector equation is \[\vec{r} = 2 \hat{i}  + 5 \hat{j} + 7 \hat{k}+ \lambda\left( \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right)\] is parallel to the plane whose vector  \[\vec{r} \cdot \left( \hat{i} + \hat{j}  - \hat{k}  \right) = 7 .\]  Also, find the distance between them.

  

Find the angle between the line \[\frac{x - 2}{3} = \frac{y + 1}{- 1} = \frac{z - 3}{2}\] and the plane

3x + 4y + z + 5 = 0.

  

State when the line \[\vec{r} = \vec{a} + \lambda \vec{b}\]  is parallel to the plane  \[\vec{r} \cdot \vec{n} = d .\]Show that the line  \[\vec{r} = \hat{i}  + \hat{j}  + \lambda\left( 3 \hat{i}  - \hat{j}  + 2 \hat{k}  \right)\]  is parallel to the plane  \[\vec{r} \cdot \left( 2 \hat{j} + \hat{k} \right) = 3 .\]   Also, find the distance between the line and the plane.

 
 

Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right) = 1\] and the line whose vector equation is  \[\vec{r} = \left( - \hat{i}  + \hat{j} + \hat{k}  \right) + \lambda\left( 2 \hat{i}  + \hat{j}  + 4 \hat{k}  \right)\]   are parallel. Also, find the distance between them. 


Find the angle between the line

\[\frac{x + 1}{2} = \frac{y}{3} = \frac{z - 3}{6}\]  and the plane 10x + 2y − 11z = 3.
 

Write the angle between the line \[\frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z + 3}{- 2}\]  and the plane x + y + 4 = 0. 

 

 Find the angle between the two lines `2x = 3y = -z and 6x =-y = -4z`


Find the angle between the lines whose direction cosines are given by the equations: 3l + m + 5n = 0 and 6mn – 2nl + 5lm = 0.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0.


`vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)` and `vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)`


`vecr = 3hati + hatj + 2hatk + l(hati - hatj + 2hatk)` and `vecr = 2hati + hatj + 56hatk + m(3hati - 5hatj + 4hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×