Advertisements
Advertisements
Question
If l1, m1, n1; l2, m2, n2; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.
Solution
Let `vec"a", vec"b", vec"c"` and `vec"d"` are such that
`vec"a" = l_"i"hat"i" + "m"_1hat"i" + "n"_1hat"k"`
`vec"b" = l_2hat"i" + "m"_2hat"j" + "n"_2hat"k"`
`vec"c" = l_3hat"i" + "m"_3hat"j" + "n"_3hat"k"`
And `vec"d" = (l_1 + l_2 + l_3)hat"i" + ("m"_1 + "m"_2 + "m"_3)hat"j" + ("n"_1 + "n"_2 + "n"_3)hat"k"`
Since the given d’cosines are mutually perpendicular then
l1l2 + m1m2 + n1n2 = 0
l2l3 + m2m3 + n2n3 = 0
l1l3 + m1m3 + n1n3 = 0
Let α, β and ϒ be the angles between `vec"a"` nad `vec"d"`, `vec"b"` and `vec"d"`, `vec"c"` and `vec"d"` respectively.
∴ `cos alpha = l_1(l_1 + l_2 + l_3) + m_1(m_1 + m_2 + m_3) + n_1(n_1 + n_2 + n_3)`
= `l_1^2 + l_1l_2 + l_1l_3 + m_1^2 + m_1m_2 + m_1m_3 + n_1^2 + n_1n_2 + n_1n_3`
= `(l_1^2 + m_1^2 + n_1^2) + (l_1l_2 + m_1m_2 + n_1n_2) + (l_1l_3 + m_1m_3 + n_1n_3)`
= 1 + 0 + 0
= 1
∴ `cos beta = l_2(l_1 + l_2 + l_3) + m_2(m_1 + m_2 + m_3) + n_2(n_1 + n_2 + n_3)`
= `l_1l_2 + l_2^2 + l_2l_3 + m_1m_2 + m_2^2 + m_2m_3 + n_1n_2 + n_2^2 + n_2n_3`
= `(l_2^2 + m_2^2 + n_2^2) + (l_1l_2 + m_1m_2 + n_1n_2) + (l_2l_3 + m_2 +m_3 + n_2n_3)`
= 1 + 0 + 0
= 1
Similarly,
∴ `cos ϒ = l_2(l_1 + l_2 + l_3) + m_2(m_1 + m_2 + m_3) + n_2(n_1 + n_2 + n_3)`
= `l_1l_3 + l_2 +l_3 + l_3^2 + m_1m-3 + m_2m_3 + m_3^2 + n_1n_3 + n_2n_3 + n_3^2`
= `(l_3^2 + m_3^2 + n_3^2) + (l_1_3 + m_1 + m_3 + n_1n_3) + (l_2l_3 + m_2 + m_3 + n_2 n_3)`
= 1 + 0 + 0
= 1
∴ `cos alpha = cos beta = cos ϒ` = 1
⇒ α = β = ϒ which is the required result.
APPEARS IN
RELATED QUESTIONS
If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 - 5xy + 3y2 =0,
then show that 100(h2 - ab) = (a + b)2
Find the acute angle between the lines whose direction ratios are 5, 12, -13 and 3, - 4, 5.
Find the angle between the following pair of lines:
`vecr = 2hati - 5hatj + hatk + lambda(3hati - 2hatj + 6hatk) and vecr = 7hati - 6hatk + mu(hati + 2hatj + 2hatk)`
Find the angle between the following pair of lines:
`vecr = 3hati + hatj - 2hatk + lambda(hati - hatj - 2hatk) and vecr = 2hati - hatj -56hatk + mu(3hati - 5hatj - 4hatk)`
Find the angle between the following pairs of lines:
`(x-2)/2 = (y-1)/5 = (z+3)/(-3)` and `(x+2)/(-1) = (y-4)/8 = (z -5)/4`
Find the angle between the following pairs of lines:
`x/y = y/2 = z/1` and `(x-5)/4 = (y-2)/1 = (z - 3)/8`
Find the values of p so the line `(1-x)/3 = (7y-14)/2p = (z-3)/2` and `(7-7x)/(3p) = (y -5)/1 = (6-z)/5` are at right angles.
The measure of the acute angle between the lines whose direction ratios are 3, 2, 6 and –2, 1, 2 is ______.
Find the angle between the line \[\vec{r} = \left( 2 \hat{i}+ 3 \hat {j} + 9 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right)\] and the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 5 .\]
Find the angle between the line \[\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z + 1}{1}\] and the plane 2x + y − z = 4.
Find the angle between the line joining the points (3, −4, −2) and (12, 2, 0) and the plane 3x − y + z = 1.
The line \[\vec{r} = \hat{i} + \lambda\left( 2 \hat{i} - m \hat{j} - 3 \hat{k} \right)\] is parallel to the plane \[\vec{r} \cdot \left( m \hat{i} + 3 \hat{j} + \hat{k} \right) = 4 .\] Find m.
Show that the line whose vector equation is \[\vec{r} = 2 \hat{i} + 5 \hat{j} + 7 \hat{k}+ \lambda\left( \hat{i} + 3 \hat{j} + 4 \hat{k} \right)\] is parallel to the plane whose vector \[\vec{r} \cdot \left( \hat{i} + \hat{j} - \hat{k} \right) = 7 .\] Also, find the distance between them.
State when the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] is parallel to the plane \[\vec{r} \cdot \vec{n} = d .\]Show that the line \[\vec{r} = \hat{i} + \hat{j} + \lambda\left( 3 \hat{i} - \hat{j} + 2 \hat{k} \right)\] is parallel to the plane \[\vec{r} \cdot \left( 2 \hat{j} + \hat{k} \right) = 3 .\] Also, find the distance between the line and the plane.
Find the angle between the line
Write the angle between the line \[\frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z + 3}{- 2}\] and the plane x + y + 4 = 0.
Find the angle between the two lines `2x = 3y = -z and 6x =-y = -4z`
Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0.
`vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)` and `vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)`
`vecr = 3hati + hatj + 2hatk + l(hati - hatj + 2hatk)` and `vecr = 2hati + hatj + 56hatk + m(3hati - 5hatj + 4hatk)`
Assertion (A): The acute angle between the line `barr = hati + hatj + 2hatk + λ(hati - hatj)` and the x-axis is `π/4`
Reason(R): The acute angle ЁЭЬГ between the lines `barr = x_1hati + y_1hatj + z_1hatk + λ(a_1hati + b_1hatj + c_1hatk)` and `barr = x_2hati + y_2hatj + z_2hatk + μ(a_2hati + b_2hatj + c_2hatk)` is given by cosθ = `(|a_1a_2 + b_1b_2 + c_1c_2|)/sqrt(a_1^2 + b_1^2 + c_1^2 sqrt(a_2^2 + b_2^2 + c_2^2)`
The angle between two lines `(x + 1)/2 = (y + 3)/2 = (z - 4)/(-1)` and `(x - 4)/1 = (y + 4)/2 = (z + 1)/2` is ______.
A straight line L through the point (3, –2) is inclined at an angle of 60° to the line `sqrt(3)x + y` = 1. If L also intersects the x-axis, then the equation of L is ______.
The angle between the lines 2x = 3y = – z and 6x = – y = – 4z is ______.