English

Find the angle between the following pairs of lines: x-22=y-15=z+3-3 and x+2-1=y-48=z-54 - Mathematics

Advertisements
Advertisements

Question

Find the angle between the following pairs of lines: 

`(x-2)/2 = (y-1)/5 = (z+3)/(-3)` and `(x+2)/(-1) = (y-4)/8 = (z -5)/4`

Sum

Solution

The direction ratios of the given lines are 2, 5, −3 and −1, 8, and 4, respectively.

If the angle between the given lines is θ, then

cos θ = `(a_1a_2 + b_1b_2 + c_1c_2)/(sqrt(a_1^2 + b_1^2 + c_1^2). sqrt(a_2^2 + b_2^2 + c_2^2))`

= `((2) (-1) + (5) (8) + (-3) (4))/(sqrt(2^2 + 5^2 +(-3)^2). sqrt((-1)^2 + 8^2 + 4^2))`

= `(-2 + 40 - 12)/(sqrt38. sqrt81)`

= `26/(9sqrt38)`

⇒ θ = `cos^-1  26/(9sqrt38)` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Three Dimensional Geometry - Exercise 11.2 [Page 478]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 11 Three Dimensional Geometry
Exercise 11.2 | Q 11.1 | Page 478

RELATED QUESTIONS

If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 - 5xy + 3y2 =0,

then show that 100(h2 - ab) = (a + b)2


Find the acute angle between the lines whose direction ratios are 5, 12, -13 and 3, - 4, 5.


Find the angle between the following pair of lines:

`vecr = 2hati - 5hatj + hatk + lambda(3hati - 2hatj + 6hatk) and vecr = 7hati - 6hatk + mu(hati + 2hatj + 2hatk)`


Find the angle between the following pair of lines:

`vecr = 3hati + hatj - 2hatk + lambda(hati - hatj - 2hatk) and vecr = 2hati - hatj -56hatk + mu(3hati - 5hatj - 4hatk)`


Find the angle between the following pairs of lines:

`x/y = y/2 = z/1` and `(x-5)/4 = (y-2)/1 = (z - 3)/8`


Find the values of p so the line `(1-x)/3 = (7y-14)/2p = (z-3)/2` and `(7-7x)/(3p) = (y -5)/1 = (6-z)/5` are at right angles.


Find the angle between the lines whose direction ratios are a, b, c and b − c, c − a, a − b.


The measure of the acute angle between the lines whose direction ratios are 3, 2, 6 and –2, 1, 2 is ______.


Find the angle between the line \[\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z + 1}{1}\]  and the plane 2x + y − z = 4.

  

Find the angle between the line joining the points (3, −4, −2) and (12, 2, 0) and the plane 3x − y + z = 1.

 

The line  \[\vec{r} = \hat{i} + \lambda\left( 2 \hat{i} - m \hat{j}  - 3 \hat{k}  \right)\]  is parallel to the plane  \[\vec{r} \cdot \left( m \hat{i}  + 3 \hat{j}  + \hat{k}  \right) = 4 .\] Find m

 

Show that the line whose vector equation is \[\vec{r} = 2 \hat{i}  + 5 \hat{j} + 7 \hat{k}+ \lambda\left( \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right)\] is parallel to the plane whose vector  \[\vec{r} \cdot \left( \hat{i} + \hat{j}  - \hat{k}  \right) = 7 .\]  Also, find the distance between them.

  

Find the angle between the line \[\frac{x - 2}{3} = \frac{y + 1}{- 1} = \frac{z - 3}{2}\] and the plane

3x + 4y + z + 5 = 0.

  

State when the line \[\vec{r} = \vec{a} + \lambda \vec{b}\]  is parallel to the plane  \[\vec{r} \cdot \vec{n} = d .\]Show that the line  \[\vec{r} = \hat{i}  + \hat{j}  + \lambda\left( 3 \hat{i}  - \hat{j}  + 2 \hat{k}  \right)\]  is parallel to the plane  \[\vec{r} \cdot \left( 2 \hat{j} + \hat{k} \right) = 3 .\]   Also, find the distance between the line and the plane.

 
 

Find the angle between the line

\[\frac{x + 1}{2} = \frac{y}{3} = \frac{z - 3}{6}\]  and the plane 10x + 2y − 11z = 3.
 

 Find the angle between the two lines `2x = 3y = -z and 6x =-y = -4z`


Find the angle between the lines whose direction cosines are given by the equations: 3l + m + 5n = 0 and 6mn – 2nl + 5lm = 0.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


If l1, m1, n1; l2, m2, n2; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.


`vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)` and `vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)`


`vecr = 3hati + hatj + 2hatk + l(hati - hatj + 2hatk)` and `vecr = 2hati + hatj + 56hatk + m(3hati - 5hatj + 4hatk)`


Assertion (A): The acute angle between the line `barr = hati + hatj + 2hatk  + λ(hati - hatj)` and the x-axis is `π/4`

Reason(R): The acute angle ЁЭЬГ between the lines `barr = x_1hati + y_1hatj + z_1hatk  + λ(a_1hati + b_1hatj + c_1hatk)` and  `barr = x_2hati + y_2hatj + z_2hatk  + μ(a_2hati + b_2hatj + c_2hatk)` is given by cosθ = `(|a_1a_2 + b_1b_2 + c_1c_2|)/sqrt(a_1^2 + b_1^2 + c_1^2 sqrt(a_2^2 + b_2^2 + c_2^2)`


The angle between two lines `(x + 1)/2 = (y + 3)/2 = (z - 4)/(-1)` and `(x - 4)/1 = (y + 4)/2 = (z + 1)/2` is ______.


The angle between the lines 2x = 3y = – z and 6x = – y = – 4z is ______.


Find the angle between the following two lines:

`vecr = 2hati - 5hatj + hatk + λ(3hati + 2hatj + 6hatk)`

`vecr = 7hati - 6hatk + μ(hati + 2hatj + 2hatk)`


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×