English

Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0. - Mathematics

Advertisements
Advertisements

Question

Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0.

Sum

Solution

The given equations are

l + m + n = 0   ......(i)

l2 + m2 – n2 = 0  .......(ii)

From equation (i) n = – (l + m)

Putting the value of n in equation (ii) we get

l2 + m2 + [– (l + m)2] = 0

⇒ l2 + m2 – l2 – m2 – 2lm = 0

⇒ – 2lm = 0

⇒ lm = 0

⇒ (– m – n)m = 0 .....[∵ l = – m – n]

⇒ (m + n)m = 0

⇒ m = 0 or m = – n

⇒ l = 0 or l = – n

∴ Direction cosines of the two lines are

0, – n, n and – n, 0, n

⇒ 0, – 1, 1 and – 1, 0, 1

∴ `cos theta = ((0hat"i" - hat"j" + hat"k")*(-hat"i" + 0hat"j" + hat"k"))/(sqrt((-1)^2 + (1)^2) sqrt((-1)^2 + (1)^2)`

= `1/(sqrt(2) * sqrt(2)`

= `1/2`

∴ `theta = pi/3`

Hence, the required angle is `pi/3`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Three Dimensional Geometry - Exercise [Page 236]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 11 Three Dimensional Geometry
Exercise | Q 12 | Page 236

RELATED QUESTIONS

If the angle between the lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between the lines 2x2 - 5xy + 3y2 =0,

then show that 100(h2 - ab) = (a + b)2


Find the angle between the following pair of lines:

`vecr = 3hati + hatj - 2hatk + lambda(hati - hatj - 2hatk) and vecr = 2hati - hatj -56hatk + mu(3hati - 5hatj - 4hatk)`


Find the angle between the following pairs of lines:

`x/y = y/2 = z/1` and `(x-5)/4 = (y-2)/1 = (z - 3)/8`


Find the values of p so the line `(1-x)/3 = (7y-14)/2p = (z-3)/2` and `(7-7x)/(3p) = (y -5)/1 = (6-z)/5` are at right angles.


Find the angle between the lines whose direction ratios are a, b, c and b − c, c − a, a − b.


The measure of the acute angle between the lines whose direction ratios are 3, 2, 6 and –2, 1, 2 is ______.


Find the angle between the line \[\vec{r} = \left( 2 \hat{i}+ 3 \hat {j}  + 9 \hat{k}  \right) + \lambda\left( 2 \hat{i} + 3 \hat{j}  + 4 \hat{k}  \right)\]  and the plane  \[\vec{r} \cdot \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 5 .\]

 

Find the angle between the line \[\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z + 1}{1}\]  and the plane 2x + y − z = 4.

  

Find the angle between the line \[\frac{x - 2}{3} = \frac{y + 1}{- 1} = \frac{z - 3}{2}\] and the plane

3x + 4y + z + 5 = 0.

  

Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right) = 1\] and the line whose vector equation is  \[\vec{r} = \left( - \hat{i}  + \hat{j} + \hat{k}  \right) + \lambda\left( 2 \hat{i}  + \hat{j}  + 4 \hat{k}  \right)\]   are parallel. Also, find the distance between them. 


Find the angle between the line

\[\frac{x + 1}{2} = \frac{y}{3} = \frac{z - 3}{6}\]  and the plane 10x + 2y − 11z = 3.
 

Write the angle between the line \[\frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z + 3}{- 2}\]  and the plane x + y + 4 = 0. 

 

 Find the angle between the two lines `2x = 3y = -z and 6x =-y = -4z`


Find the angle between the lines whose direction cosines are given by the equations: 3l + m + 5n = 0 and 6mn – 2nl + 5lm = 0.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


If l1, m1, n1; l2, m2, n2; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.


`vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)` and `vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)`


`vecr = 3hati + hatj + 2hatk + l(hati - hatj + 2hatk)` and `vecr = 2hati + hatj + 56hatk + m(3hati - 5hatj + 4hatk)`


The angle between two lines `(x + 1)/2 = (y + 3)/2 = (z - 4)/(-1)` and `(x - 4)/1 = (y + 4)/2 = (z + 1)/2` is ______.


The angle between the lines 2x = 3y = – z and 6x = – y = – 4z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×