हिंदी

Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.

योग

उत्तर

Given that 2l + 2m – n = 0  ......(i)

And mn + nl + lm = 0  .....(ii)

Eliminating m from equation (i) and (ii) we get,

m = `("n" - 2l)/2`  .....[From (i)]

⇒ `(("n" - 2l)/2)"n" + "nl" + "l"(("n" - 2"l")/2)` = 0

⇒ `("n"^2 - 2"n"l + 2"n"l + "nl" - 2"l"^2)/2` = 0

⇒ n2 + nl – 2l 2 = 0

⇒ n2 + 2nl – nl – 2l2 = 0

⇒ n(n + 2l) – l(n + 2l) = 0

⇒ (n – l)(n + 2l) = 0

⇒ n = – 2l and n = l

∴ m = `(-2l - 2l)/2`, m = `(l - 2l)/2`

⇒ m = –2l, m = `(-1)/2`

Therefore, the direction ratios are proportional to l, – 2l, –2l and l, `(-1)/2`, l.

⇒ 1, – 2, – 2 and 2, – 1, 2

If the two lines are perpendicular to each other then

1(2) – 2(– 1) – 2 × 2 = 0

2 + 2 – 4 = 0

0 = 0

Hence, the two lines are perpendicular.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Three Dimensional Geometry - Exercise [पृष्ठ २३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 11 Three Dimensional Geometry
Exercise | Q 27 | पृष्ठ २३७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Find the acute angle between the lines whose direction ratios are 5, 12, -13 and 3, - 4, 5.


Find the angle between the following pair of lines:

`vecr = 2hati - 5hatj + hatk + lambda(3hati - 2hatj + 6hatk) and vecr = 7hati - 6hatk + mu(hati + 2hatj + 2hatk)`


Find the angle between the following pair of lines:

`vecr = 3hati + hatj - 2hatk + lambda(hati - hatj - 2hatk) and vecr = 2hati - hatj -56hatk + mu(3hati - 5hatj - 4hatk)`


Find the angle between the following pairs of lines: 

`(x-2)/2 = (y-1)/5 = (z+3)/(-3)` and `(x+2)/(-1) = (y-4)/8 = (z -5)/4`


Find the angle between the following pairs of lines:

`x/y = y/2 = z/1` and `(x-5)/4 = (y-2)/1 = (z - 3)/8`


Find the angle between the line \[\vec{r} = \left( 2 \hat{i}+ 3 \hat {j}  + 9 \hat{k}  \right) + \lambda\left( 2 \hat{i} + 3 \hat{j}  + 4 \hat{k}  \right)\]  and the plane  \[\vec{r} \cdot \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 5 .\]

 

Find the angle between the line \[\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z + 1}{1}\]  and the plane 2x + y − z = 4.

  

Find the angle between the line joining the points (3, −4, −2) and (12, 2, 0) and the plane 3x − y + z = 1.

 

The line  \[\vec{r} = \hat{i} + \lambda\left( 2 \hat{i} - m \hat{j}  - 3 \hat{k}  \right)\]  is parallel to the plane  \[\vec{r} \cdot \left( m \hat{i}  + 3 \hat{j}  + \hat{k}  \right) = 4 .\] Find m

 

Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right) = 1\] and the line whose vector equation is  \[\vec{r} = \left( - \hat{i}  + \hat{j} + \hat{k}  \right) + \lambda\left( 2 \hat{i}  + \hat{j}  + 4 \hat{k}  \right)\]   are parallel. Also, find the distance between them. 


Find the angle between the line

\[\frac{x + 1}{2} = \frac{y}{3} = \frac{z - 3}{6}\]  and the plane 10x + 2y − 11z = 3.
 

Write the angle between the line \[\frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z + 3}{- 2}\]  and the plane x + y + 4 = 0. 

 

 Find the angle between the two lines `2x = 3y = -z and 6x =-y = -4z`


Find the angle between the lines whose direction cosines are given by the equations: 3l + m + 5n = 0 and 6mn – 2nl + 5lm = 0.


`vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)` and `vecr = 2hati - 5hatj + hatk + lambda(3hati + 2hatj + 6hatk)`


`vecr = 3hati + hatj + 2hatk + l(hati - hatj + 2hatk)` and `vecr = 2hati + hatj + 56hatk + m(3hati - 5hatj + 4hatk)`


Assertion (A): The acute angle between the line `barr = hati + hatj + 2hatk  + λ(hati - hatj)` and the x-axis is `π/4`

Reason(R): The acute angle 𝜃 between the lines `barr = x_1hati + y_1hatj + z_1hatk  + λ(a_1hati + b_1hatj + c_1hatk)` and  `barr = x_2hati + y_2hatj + z_2hatk  + μ(a_2hati + b_2hatj + c_2hatk)` is given by cosθ = `(|a_1a_2 + b_1b_2 + c_1c_2|)/sqrt(a_1^2 + b_1^2 + c_1^2 sqrt(a_2^2 + b_2^2 + c_2^2)`


The angle between two lines `(x + 1)/2 = (y + 3)/2 = (z - 4)/(-1)` and `(x - 4)/1 = (y + 4)/2 = (z + 1)/2` is ______.


A straight line L through the point (3, –2) is inclined at an angle of 60° to the line `sqrt(3)x + y` = 1. If L also intersects the x-axis, then the equation of L is ______.


Find the angle between the following two lines:

`vecr = 2hati - 5hatj + hatk + λ(3hati + 2hatj + 6hatk)`

`vecr = 7hati - 6hatk + μ(hati + 2hatj + 2hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×