Advertisements
Advertisements
प्रश्न
Find the area and the perimeter of quadrilateral ABCD, given below; if AB = 8 cm, AD = 10 cm, BD = 12 cm, DC = 13 cm and ∠DBC = 90°.
उत्तर
Given, AB = 8 cm, AD = 10 cm, BD = 12 cm, DC = 13 cm and ∠DBC = 90°
BC = `sqrt("DC"^2 - "BD"^2)`
= `sqrt( 13^2 - 12^2 )`
= 5 cm
Hence, perimeter = 8 + 10 + 13 + 5 = 36 cm
Area of ΔABD, `sqrt("s"("s"-"a")("s"-"b")("s"-"c"))`
Here, s = `("a"+"b"+"c")/2`
= `(10+12+8)/2`
= `30/2`
= 15 cm
ΔABD = `sqrt( 15( 15 - 8 )( 15 - 10 )( 15 - 12 ))`
= `sqrt( 15 xx 7 xx 5 xx 3 )`
= `15sqrt7`
= 39.7
Area of ΔBDC,
ΔBDC = `1/2` × 12 × 5
= 30
Now,
Area of ABCD = area of ΔABD + area of ΔBDC
= 39.7 + 30
= 69.7 sq.cm
APPEARS IN
संबंधित प्रश्न
Find the area of a triangle, whose sides are :
21 m, 28 m, and 35 m
Two sides of a triangle are 6.4 m and 4.8 m. If the height of the triangle corresponding to 4.8 m side is 6 m;
find :
(i) area of the triangle ;
(ii) height of the triangle corresponding to 6.4 m sides.
The base and the height of a triangle are in the ratio 4: 5. If the area of the triangle is 40 m2; find its base and height.
A field is in the shape of a quadrilateral ABCD in which side AB = 18 m, side AD = 24 m, side BC = 40m, DC = 50 m and angle A = 90°. Find the area of the field.
The lengths of the sides of a triangle are in the ratio 4: 5 : 3 and its perimeter is 96 cm. Find its area.
One of the equal sides of an isosceles triangle is 13 cm and its perimeter is 50 cm. Find the area of the triangle.
Find the perimeter and the area of a right angled triangle whose sides are 6 feet, 8 feet and 10 feet
The scalene triangle has 40 cm as its perimeter and whose two sides are 13 cm and 15 cm, find the third side
A piece of wire is 36 cm long. What will be the length of each side if we form an equilateral triangle
Find the perimeter of a triangle with sides measuring 10 cm, 14 cm and 15 cm.