Advertisements
Advertisements
प्रश्न
Find the area of the region included between: y2 = 4x, and y = x
उत्तर
The vertex of the parabola y2 = 4x is at the origin O = (0, 0).
Points of intersection of parabola and line are
∴ x2 = 4x
x2 = 4x = 0
∴ x(x - 4) = 0
x = 0 or x = 4
∴ y = x
points are (0, 0) & (4, 4)
Area bounded by parabola and line is = Area (OABCO)
= A (OCBCO) - A (OCBAO)
`int_0^4 2sqrtx*dx - int_0^4x*dx`
= `2 [x^(3/2)/(3/2)]_0^4 - [x^2/2]_0^4`
= `2 xx 2/3 [(4)^(3/2) - (0)^(3/2)] - 1/2 [4^2 - 0^2]`
= `4/3[8 - 0]- 1/2 [16 - 0]`
= `32/3 - 8`
= `(32 - 24)/3`
Area = `8/3` square units.
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the following curves, X-axis and the given lines: y = 2x, x = 0, x = 5
Find the area of the region bounded by the following curves, X-axis and the given lines : y = sin x, x = 0, x = `pi/(2)`
Find the area of the region bounded by the parabola: y = 4 – x2 and the X-axis.
Find the area of the region included between y2 = 2x and y = 2x.
Find the area of the region included between: y = x2 and the line y = 4x
Choose the correct option from the given alternatives :
The area under the curve y = `2sqrt(x)`, enclosed between the lines x = 0 and x = 1 is
Choose the correct option from the given alternatives :
The area of the region bounded by the ellipse `x^2/a^2 + y^2/b^2` = 1 is
Choose the correct option from the given alternatives :
The area bounded by the parabola y2 = x and the line 2y = x is
Choose the correct option from the given alternatives :
The area bounded by y = `sqrt(x)` and the x = 2y + 3, X-axis in first quadrant is
Choose the correct option from the given alternatives :
The area bounded by the ellipse `x^2/a^2 y^2/b^2` = 1 and the line `x/a + y/b` = 1 is
Choose the correct option from the given alternatives :
The area bounded by the parabola y = x2 and the line y = x is
Choose the correct option from the given alternatives :
The area enclosed between the two parabolas y2 = 4x and y = x is
Choose the correct option from the given alternatives :
The area of the region bounded by x2 = 16y, y = 1, y = 4 and x = 0 in the first quadrant, is
Solve the following :
Find the area of the region bounded by the parabola y2 = x and the line y = x in the first quadrant.
Solve the following :
Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = π
Solve the following :
Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = `pi/(3)`
Solve the following :
Find the area of the region lying between the parabolas : y2 = x and x2 = y.
The area of the region bounded by the ellipse x2/64 + y2/100 = 1, is ______ sq.units
The area bounded by the curve y2 = x2, and the line x = 8 is ______
The area enclosed by the line 2x + 3y = 6 along X-axis and the lines x = 0, x = 3 is ______ sq.units
Find the area bounded by the curve y = sin x, the lines x = 0 and x = `pi/2`
Find the area of the region bounded by the curve y = x2, the X−axis and the given lines x = 0, x = 3
Find the area of the region bounded by the curve y2 = 8x, the X−axis and the given lines x = 1, x = 3, y ≥ 0
Find the area of the region bounded by the parabola y2 = 16x and the line x = 4
Find the area of the region bounded by the curves x2 = 8y, y = 2, y = 4 and the Y-axis, lying in the first quadrant
Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay
Find the area of the sector bounded by the circle x2+ y2 = 16, and the line y = x in the first quadrant
Find the area of the region bounded by the curve (y − 1)2 = 4(x + 1) and the line y = (x − 1)
Find the area of the region bounded by the curve y2 = 4x, the X-axis and the lines x = 1, x = 4 for y ≥ 0.
Find the area of the region bounded by the curve y = x2 and the line y = 4.