हिंदी

Find the area of the region included between: y = x2 and the line y = 4x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the area of the region included between: y = x2 and the line y = 4x

योग

उत्तर

The vertex of the parabola y = x2 is at the origin O(0, 0)
To find the points of the intersection of the line and the parabola.

Equating the values of y from the two equations, we get
x2 = 4x
∴ x2 – 4x = 0
∴ x(x – 4) = 0
∴ x = 0, x = 4
When x = 0, y = 4(0) = 0
When x = 4, y = 4(4) = 16
∴ the points of inteersection are O(0, 0) and B(4, 16)
Required area = area of the region OABCO
= (area of the region ODBCO) – (area of the region ODBAO)
Now, area of the region ODBCO
= area under the line y = 4x between x = 0 and x = 4

= `int_0^4y*dx,  "where"  y = 4x`

= `int_0^4 4x*dx`

= `4int_0^4x*dx`

= `4[x^2/2]_0^4`

= 2(16 – 0)
= 32
Area of the region ODBAO
= area under the parabola y = x2 between x = 0 and x = 4

= `int_0^4y*dx,  "where"  y = x^2`

= `int_0^4 x^2*dx`

= `[x^3/3]_0^4`

= `(1)/(3)(64 - 0)`

= `(64)/(3)`

∴ required area

= `32 - (64)/(3)`

= `(32)/(3)"sq units"`.

shaalaa.com
Area Bounded by the Curve, Axis and Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Application of Definite Integration - Exercise 5.1 [पृष्ठ १८७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Application of Definite Integration
Exercise 5.1 | Q 3.3 | पृष्ठ १८७

संबंधित प्रश्न

Find the area of the region bounded by the following curves, X-axis and the given lines: y = 2x, x = 0, x = 5


Find the area of the region bounded by the following curves, X-axis and the given lines : y = sin x, x = 0, x = `pi/(2)`


Find the area of the region bounded by the following curves, X-axis and the given lines : x = 0, x = 5, y = 0, y = 4


Find the area of the region bounded by the following curves, X-axis and the given lines: xy = 2, x = 1, x = 4


Find the area of the region bounded by the following curves, X-axis and the given lines: y2 = 16x, x = 0, x = 4


Find the area of the region bounded by the parabola: y = 4 – x2 and the X-axis.


Find the area of the region included between y = x2 + 3 and the line y = x + 3.


The area enclosed between the parabola y2 = 4x and line y = 2x is ______.


The area of the region bounded by y = cos x, Y-axis and the lines x = 0, x = 2π is ______.


Choose the correct option from the given alternatives :

The area bounded by the parabola y2 = 8x, the X-axis and the latus rectum is


Choose the correct option from the given alternatives :

The area under the curve y = `2sqrt(x)`, enclosed between the lines x = 0 and x = 1 is


Choose the correct option from the given alternatives :

The area of the region bounded by the ellipse `x^2/a^2 + y^2/b^2` = 1 is


Choose the correct option from the given alternatives : 

The area enclosed between the curve y = cos 3x, 0 ≤ x ≤ `pi/(6)` and the X-axis is


Choose the correct option from the given alternatives :

The area bounded by y = `sqrt(x)` and the x = 2y + 3, X-axis in first quadrant is


Choose the correct option from the given alternatives :

The area enclosed between the two parabolas y2 = 4x and y = x is


The area bounded by the curve y = tan x, X-axis and the line x = `pi/(4)` is ______.


Choose the correct option from the given alternatives : 

The area of the region bounded by x2 = 16y, y = 1, y = 4 and x = 0 in the first quadrant, is


Choose the correct option from the given alternatives :

The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by


Solve the following :

Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = π


Solve the following :

Find the area enclosed between the circle x2 + y2 = 1 and the line x + y = 1, lying in the first quadrant.


The area bounded by the parabola y2 = 32x the X-axis and the latus rectum is ______ sq.units


Find the area of the region bounded by the parabola y2 = 32x and its Latus rectum in first quadrant


Find the area of the region bounded by the curve y2 = 8x, the X−axis and the given lines x = 1, x = 3, y ≥ 0


Find the area of the region bounded by the curve x2 = 12y, the Y−axis and the given lines y = 2, y = 4, x ≥ 0


Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay


Find the area of the sector bounded by the circle x2+ y2 = 16, and the line y = x in the first quadrant


Find the area of the region bounded by the curve (y − 1)2 = 4(x + 1) and the line y = (x − 1)


The area bounded by the curve y = x3, the X-axis and the Lines x = –2 and x = 1 is ______.


Find the area of the region bounded by the curve y = x2, and the lines x = 1, x = 2, and y = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×