English

Find the area of the region included between: y2 = 4x, and y = x - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the area of the region included between: y2 = 4x, and y = x

Sum

Solution

The vertex of the parabola y2 = 4x is at the origin O = (0, 0).

Points of intersection of parabola and line are 

∴ x2 = 4x

x2 = 4x = 0

∴ x(x - 4) = 0

x = 0 or x = 4

∴ y = x

points are (0, 0) & (4, 4)

Area bounded by parabola and line is = Area (OABCO)

= A (OCBCO) - A (OCBAO)

`int_0^4 2sqrtx*dx - int_0^4x*dx`

= `2 [x^(3/2)/(3/2)]_0^4 - [x^2/2]_0^4`

= `2 xx 2/3 [(4)^(3/2) - (0)^(3/2)] - 1/2 [4^2 - 0^2]`

= `4/3[8 - 0]- 1/2 [16 - 0]`

= `32/3 - 8`

= `(32 - 24)/3`

Area = `8/3` square units.

shaalaa.com
Area Bounded by the Curve, Axis and Line
  Is there an error in this question or solution?
Chapter 5: Application of Definite Integration - Exercise 5.1 [Page 187]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 5 Application of Definite Integration
Exercise 5.1 | Q 3.2 | Page 187

RELATED QUESTIONS

Find the area of the region bounded by the following curves, X-axis and the given lines: x = 2y, y = 0, y = 4


Find the area of the region bounded by the following curves, X-axis and the given lines : y = sin x, x = 0, x = `pi/(2)`


Find the area of the region bounded by the following curves, X-axis and the given lines: xy = 2, x = 1, x = 4


Find the area of the region bounded by the following curves, X-axis and the given lines: y2 = 16x, x = 0, x = 4


Find the area of the region bounded by the parabola: y = 4 – x2 and the X-axis.


Find the area of the region included between y2 = 2x and y = 2x.


Find the area of the region included between: y = x2 and the line y = 4x


Find the area of the region included between: y2 = 4ax and the line y = x


Find the area of the region included between y = x2 + 3 and the line y = x + 3.


Choose the correct option from the given alternatives :

The area of the region bounded between the line x = 4 and the parabola y2 = 16x is ______.


The area of the region bounded by y = cos x, Y-axis and the lines x = 0, x = 2π is ______.


Choose the correct option from the given alternatives :

The area bounded by the parabola y2 = 8x, the X-axis and the latus rectum is


Choose the correct option from the given alternatives :

The area of the circle x2 + y2 = 25 in first quadrant is 


Choose the correct option from the given alternatives :

The area bounded by the parabola y = x2 and the line y = x is


Choose the correct option from the given alternatives : 

The area of the region bounded by x2 = 16y, y = 1, y = 4 and x = 0 in the first quadrant, is


Choose the correct option from the given alternatives :

The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by


Solve the following :

Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = π


Solve the following :

Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = `pi/(3)`


Solve the following :

Find the area of the region lying between the parabolas : 4y2 = 9x and 3x2 = 16y


Solve the following :

Find the area of the region bounded by the curve (y – 1)2 = 4(x + 1) and the line y = (x – 1).


Solve the following :

Find the area of the region bounded by the straight line 2y = 5x + 7, X-axis and x = 2, x = 5.


Solve the following :

Find the area of the region bounded by the curve y = 4x2, Y-axis and the lines y = 1, y = 4.


The area of the region bounded by the ellipse x2/64 + y2/100 = 1, is ______ sq.units


The area bounded by the curve y2 = x2, and the line x = 8 is ______


The area enclosed by the line 2x + 3y = 6 along X-axis and the lines x = 0, x = 3 is ______ sq.units


Find the area bounded by the curve y2 = 36x, the line x = 2 in first quadrant 


Find the area bounded by the curve y = sin x, the lines x = 0 and x = `pi/2`


Find the area of the region bounded by the parabola y2 = 32x and its Latus rectum in first quadrant


Find the area of the region bounded by the curve y = x2, the X−axis and the given lines x = 0, x = 3


Using integration, find the area of the region bounded by the line 2y + x = 8 , X−axis and the lines x = 2 and x = 4


Find the area of the region bounded by the parabola x2 = 4y and The X-axis and the line x = 1, x = 4


Find the area of the region bounded by the curve y = sin x, the X−axis and the given lines x = − π, x = π


Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay


Find the area of the region bounded by the curve (y − 1)2 = 4(x + 1) and the line y = (x − 1)


Find the area of the region bounded by the curve y = x2 and the line y = 4.


Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0, y = 2 and y = 4.


Find the area common to the parabola y2 = x – 3 and the line x = 5.


Find the area of the region bounded by the curve y = x2, and the lines x = 1, x = 2, and y = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×