Advertisements
Advertisements
Question
Choose the correct option from the given alternatives :
The area bounded by the parabola y = x2 and the line y = x is
Options
`(1)/(2)"sq unit"`
`(1)/(3)"sq unit"`
`(1)/(6)"sq unit"`
`(1)/(12)"sq unit"`
Solution
`(1)/(6)"sq unit"`.
APPEARS IN
RELATED QUESTIONS
Find the area of the region bounded by the following curves, X-axis and the given lines: y = 2x, x = 0, x = 5
Find the area of the region bounded by the following curves, X-axis and the given lines: x = 2y, y = 0, y = 4
Find the area of the region bounded by the following curves, X-axis and the given lines : x = 0, x = 5, y = 0, y = 4
Find the area of the region bounded by the following curves, X-axis and the given lines: y2 = 16x, x = 0, x = 4
Find the area of the region bounded by the parabola y2 = 16x and its latus rectum.
Find the area of the region included between: y2 = 4x, and y = x
Choose the correct option from the given alternatives :
The area of the region enclosed by the curve y = `(1)/x`, and the lines x = e, x = e2 is given by
Choose the correct option from the given alternatives :
The area of the region bounded between the line x = 4 and the parabola y2 = 16x is ______.
Choose the correct option from the given alternatives :
The area under the curve y = `2sqrt(x)`, enclosed between the lines x = 0 and x = 1 is
Choose the correct option from the given alternatives :
The area of the region bounded by the ellipse `x^2/a^2 + y^2/b^2` = 1 is
Choose the correct option from the given alternatives :
The area bounded by the parabola y2 = x and the line 2y = x is
Choose the correct option from the given alternatives :
The area enclosed between the curve y = cos 3x, 0 ≤ x ≤ `pi/(6)` and the X-axis is
The area bounded by the curve y = tan x, X-axis and the line x = `pi/(4)` is ______.
Solve the following :
Find the area of the region bounded by the parabola y2 = x and the line y = x in the first quadrant.
Solve the following :
Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = π
Solve the following :
Find the area of the region lying between the parabolas : y2 = x and x2 = y.
Solve the following :
Find the area of the region bounded by the curve (y – 1)2 = 4(x + 1) and the line y = (x – 1).
The area of the region bounded by the ellipse x2/64 + y2/100 = 1, is ______ sq.units
The area bounded by the parabola y2 = 32x the X-axis and the latus rectum is ______ sq.units
Find the area of the region bounded by the curve x2 = 12y, the Y−axis and the given lines y = 2, y = 4, x ≥ 0
Using integration, find the area of the region bounded by the line 2y + x = 8 , X−axis and the lines x = 2 and x = 4
Find the area of the region bounded by the parabola x2 = 4y and The X-axis and the line x = 1, x = 4
Find the area of the region bounded by the curve y = sin x, the X−axis and the given lines x = − π, x = π
Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay
Find the area of the sector bounded by the circle x2+ y2 = 16, and the line y = x in the first quadrant
Find the area of the region bounded by the curve (y − 1)2 = 4(x + 1) and the line y = (x − 1)
The area bounded by the curve y = x3, the X-axis and the Lines x = –2 and x = 1 is ______.
Find the area common to the parabola y2 = x – 3 and the line x = 5.
Find the area of the region bounded by the curve y = x2, and the lines x = 1, x = 2, and y = 0.