Advertisements
Advertisements
Question
Find the area of the region bounded by the parabola x2 = 4y and The X-axis and the line x = 1, x = 4
Solution
Given equation of the parabola is x2 = 4y.
Required area = `int_1^4 y "d"x`
= `int_1^4 x^2/4 "d"x`
= `1/4[x^3/3]_1^4`
= `1/12(4^3 - 1^3)`
= `1/12(64 - 1)`
= `63/12`
= `21/4` sq.units
APPEARS IN
RELATED QUESTIONS
Find the area of the region bounded by the following curves, X-axis and the given lines: y = 2x, x = 0, x = 5
Find the area of the region bounded by the following curves, X-axis and the given lines: x = 2y, y = 0, y = 4
Find the area of the region bounded by the following curves, X-axis and the given lines : y = sin x, x = 0, x = `pi/(2)`
Find the area of the region bounded by the following curves, X-axis and the given lines: xy = 2, x = 1, x = 4
Find the area of the region bounded by the parabola y2 = 16x and its latus rectum.
Find the area of the region bounded by the parabola: y = 4 – x2 and the X-axis.
Find the area of the region included between: y2 = 4x, and y = x
Find the area of the region included between: y = x2 and the line y = 4x
Find the area of the region included between: y2 = 4ax and the line y = x
Choose the correct option from the given alternatives :
The area bounded by the regional 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by ______.
Choose the correct option from the given alternatives :
The area bounded by the curve y = x3, the X-axis and the lines x = – 2 and x = 1 is
Choose the correct option from the given alternatives :
The area of the region bounded between the line x = 4 and the parabola y2 = 16x is ______.
The area of the region bounded by y = cos x, Y-axis and the lines x = 0, x = 2π is ______.
Choose the correct option from the given alternatives :
The area bounded by the parabola y2 = x and the line 2y = x is
Choose the correct option from the given alternatives :
The area bounded by the ellipse `x^2/a^2 y^2/b^2` = 1 and the line `x/a + y/b` = 1 is
Choose the correct option from the given alternatives :
The area bounded by the parabola y = x2 and the line y = x is
Choose the correct option from the given alternatives :
The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by
Choose the correct option from the given alternatives :
The area of the region included between the line x + y = 1 and the circle x2 + y2 = 1 is
Solve the following :
Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = π
Solve the following :
Find the area of the region lying between the parabolas : 4y2 = 9x and 3x2 = 16y
Solve the following :
Find the area of the region bounded by the curve (y – 1)2 = 4(x + 1) and the line y = (x – 1).
The area bounded by the parabola y2 = x along the X-axis and the lines x = 0, x = 2 is ______ sq.units
The area bounded by the curve y2 = x2, and the line x = 8 is ______
The area enclosed by the line 2x + 3y = 6 along X-axis and the lines x = 0, x = 3 is ______ sq.units
Find the area bounded by the curve y2 = 36x, the line x = 2 in first quadrant
Find the area bounded by the curve y = sin x, the lines x = 0 and x = `pi/2`
Find the area of the region bounded by the parabola y2 = 32x and its Latus rectum in first quadrant
Find the area of the region bounded by the curve y = x2, the X−axis and the given lines x = 0, x = 3
Find the area of the region bounded by the curve y2 = 8x, the X−axis and the given lines x = 1, x = 3, y ≥ 0
Using integration, find the area of the region bounded by the line 2y + x = 8 , X−axis and the lines x = 2 and x = 4
Find the area of the region bounded by the parabola y2 = 16x and the line x = 4
Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay
Find the area of the region bounded by the curve (y − 1)2 = 4(x + 1) and the line y = (x − 1)
Find the area of the region bounded by the curve y = x2 and the line y = 4.