English

Choose the correct option from the given alternatives : The area bounded by the regional 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct option from the given alternatives :

The area bounded by the regional 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by ______.

Options

  • 12 sq units

  • 8 sq units

  • 25 sq units

  • 32 sq units

MCQ
Fill in the Blanks

Solution

The area bounded by the regional 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by 12 sq units.

Explanation:

1 ≤ x ≤ 5, 2 ≤ y ≤ 5

∴ l = 5 - 1 = 4, b = 5 - 2 = 3

Area = l × b

= 4 × 3

= 12 sq units

shaalaa.com
Area Bounded by the Curve, Axis and Line
  Is there an error in this question or solution?
Chapter 5: Application of Definite Integration - Miscellaneous Exercise 5 [Page 188]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 5 Application of Definite Integration
Miscellaneous Exercise 5 | Q 1.01 | Page 188

RELATED QUESTIONS

Find the area of the region bounded by the following curves, X-axis and the given lines: y = 2x, x = 0, x = 5


Find the area of the region bounded by the following curves, X-axis and the given lines : y = sin x, x = 0, x = `pi/(2)`


Find the area of the region included between: y2 = 4x, and y = x


Find the area of the region included between: y2 = 4ax and the line y = x


Choose the correct option from the given alternatives :

The area of the region enclosed by the curve y = `(1)/x`, and the lines x = e, x = e2 is given by


The area of the region bounded by y = cos x, Y-axis and the lines x = 0, x = 2π is ______.


Choose the correct option from the given alternatives :

The area bounded by the parabola y2 = 8x, the X-axis and the latus rectum is


Choose the correct option from the given alternatives :

The area under the curve y = `2sqrt(x)`, enclosed between the lines x = 0 and x = 1 is


Choose the correct option from the given alternatives :

The area of the circle x2 + y2 = 25 in first quadrant is 


Choose the correct option from the given alternatives :

The area of the region bounded by the ellipse `x^2/a^2 + y^2/b^2` = 1 is


Choose the correct option from the given alternatives :

The area bounded by the parabola y = x2 and the line y = x is


Choose the correct option from the given alternatives :

The area enclosed between the two parabolas y2 = 4x and y = x is


Choose the correct option from the given alternatives :

The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by


Solve the following :

Find the area of the region bounded by the following curve, the X-axis and the given lines : 0 ≤ x ≤ 5, 0 ≤ y ≤ 2


Solve the following :

Find the area of the region bounded by the parabola y2 = x and the line y = x in the first quadrant.


Solve the following :

Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = `pi/(3)`


Solve the following :

Find the area of the region lying between the parabolas : y2 = x and x2 = y.


Solve the following :

Find the area of the region bounded by the straight line 2y = 5x + 7, X-axis and x = 2, x = 5.


The area of the region bounded by the curve y = sinx, X-axis and the lines x = 0, x = 4π is ______ sq.units


The area of the region bounded by the ellipse x2/64 + y2/100 = 1, is ______ sq.units


The area enclosed by the line 2x + 3y = 6 along X-axis and the lines x = 0, x = 3 is ______ sq.units


Find the area bounded by the curve y = sin x, the lines x = 0 and x = `pi/2`


Find the area of the region bounded by the curve x2 = 12y, the Y−axis and the given lines y = 2, y = 4, x ≥ 0


Find the area of the region bounded by the parabola x2 = 4y and The X-axis and the line x = 1, x = 4


Find the area of the region bounded by the parabola y2 = 16x and the line x = 4


Find the area of the region bounded by the curve y = sin x, the X−axis and the given lines x = − π, x = π


Find the area of the region bounded by the curve y2 = 4x, the X-axis and the lines x = 1, x = 4 for y ≥ 0.


Find the area of the region bounded by the curve y = x2 and the line y = 4.


Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0, y = 2 and y = 4.


Find the area common to the parabola y2 = x – 3 and the line x = 5.


Find the area of the region bounded by the curve y = x2, and the lines x = 1, x = 2, and y = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×