Advertisements
Advertisements
Question
Find the area of the region bounded by the curve y2 = 8x, the X−axis and the given lines x = 1, x = 3, y ≥ 0
Solution
Let A be the required area.
Consider the equation y2 = 8x.
∴ A = `int_1^3 y "d"x`
= `int_1^3 sqrt(8x) "d"x`
= `2sqrt(2)[(x^(3/2))/(3/2)]_1^3`
= `(4sqrt(2))/3 [(3)^(3/2) - (1)^(3/2)]`
= `(4sqrt(2))/3 (3sqrt(3) - 1)` sq.units
APPEARS IN
RELATED QUESTIONS
Find the area of the region bounded by the following curves, X-axis and the given lines : y = sin x, x = 0, x = `pi/(2)`
Find the area of the region bounded by the following curves, X-axis and the given lines: y2 = 16x, x = 0, x = 4
Find the area of the region included between y2 = 2x and y = 2x.
Find the area of the region included between: y = x2 and the line y = 4x
Find the area of the region included between: y2 = 4ax and the line y = x
Find the area of the region included between y = x2 + 3 and the line y = x + 3.
Choose the correct option from the given alternatives :
The area of the region enclosed by the curve y = `(1)/x`, and the lines x = e, x = e2 is given by
Choose the correct option from the given alternatives :
The area bounded by the curve y = x3, the X-axis and the lines x = – 2 and x = 1 is
The area enclosed between the parabola y2 = 4x and line y = 2x is ______.
The area of the region bounded by y = cos x, Y-axis and the lines x = 0, x = 2π is ______.
Choose the correct option from the given alternatives :
The area under the curve y = `2sqrt(x)`, enclosed between the lines x = 0 and x = 1 is
Choose the correct option from the given alternatives :
The area of the circle x2 + y2 = 25 in first quadrant is
Choose the correct option from the given alternatives :
The area enclosed between the curve y = cos 3x, 0 ≤ x ≤ `pi/(6)` and the X-axis is
Choose the correct option from the given alternatives :
The area bounded by y = `sqrt(x)` and the x = 2y + 3, X-axis in first quadrant is
The area bounded by the curve y = tan x, X-axis and the line x = `pi/(4)` is ______.
Choose the correct option from the given alternatives :
The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by
Solve the following :
Find the area of the region bounded by the parabola y2 = x and the line y = x in the first quadrant.
Solve the following :
Find the area of the region bounded by the straight line 2y = 5x + 7, X-axis and x = 2, x = 5.
Solve the following :
Find the area of the region bounded by the curve y = 4x2, Y-axis and the lines y = 1, y = 4.
The area bounded by the curve y2 = x2, and the line x = 8 is ______
The area bounded by the parabola y2 = 32x the X-axis and the latus rectum is ______ sq.units
Find the area bounded by the curve y2 = 36x, the line x = 2 in first quadrant
Find the area of the region bounded by the parabola y2 = 32x and its Latus rectum in first quadrant
Find the area of the region bounded by the parabola y2 = 16x and the line x = 4
Find the area of the region bounded by the curves x2 = 8y, y = 2, y = 4 and the Y-axis, lying in the first quadrant
Find the area of the region bounded by the curve y = sin x, the X−axis and the given lines x = − π, x = π
Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay
Find the area of the region bounded by the curve (y − 1)2 = 4(x + 1) and the line y = (x − 1)
Find the area bounded by the lines y = 5x – 10, X-axis and x = 5.
Find the area of the region bounded by the curve y = x2, and the lines x = 1, x = 2, and y = 0.