English

Using integration, find the area of the region bounded by the line 2y + x = 8 , X−axis and the lines x = 2 and x = 4 - Mathematics and Statistics

Advertisements
Advertisements

Question

Using integration, find the area of the region bounded by the line 2y + x = 8 , X−axis and the lines x = 2 and x = 4

Sum

Solution

Let A be the required area.

Consider the equation 2y + x = 8.

∴ y = `1/2(8 - x)`


∴ Required area = `int_2^4 y  "d"x`

= `int_2^4 1/2(8 - x) "d"x`

= `1/2[8x - x^2/2]_2^4`

= `1/2[(8(4) - 4^2/2) - (8(2) - ^2/2)]`

= `1/2[(32 - 8) - (16 - 2)]`

= 5 sq.units

shaalaa.com
Area Bounded by the Curve, Axis and Line
  Is there an error in this question or solution?
Chapter 2.5: Application of Definite Integration - Very Short Answers

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC
Chapter 2.5 Application of Definite Integration
Very Short Answers | Q 10

RELATED QUESTIONS

Find the area of the region bounded by the following curves, X-axis and the given lines: y = 2x, x = 0, x = 5


Find the area of the region bounded by the following curves, X-axis and the given lines: x = 2y, y = 0, y = 4


Find the area of the region bounded by the following curves, X-axis and the given lines : x = 0, x = 5, y = 0, y = 4


Find the area of the region bounded by the parabola: y = 4 – x2 and the X-axis.


Find the area of the region included between: y2 = 4x, and y = x


Find the area of the region included between: y2 = 4ax and the line y = x


Find the area of the region included between y = x2 + 3 and the line y = x + 3.


Choose the correct option from the given alternatives :

The area of the region enclosed by the curve y = `(1)/x`, and the lines x = e, x = e2 is given by


The area enclosed between the parabola y2 = 4x and line y = 2x is ______.


Choose the correct option from the given alternatives :

The area of the region bounded between the line x = 4 and the parabola y2 = 16x is ______.


Choose the correct option from the given alternatives :

The area bounded by the parabola y2 = 8x, the X-axis and the latus rectum is


Choose the correct option from the given alternatives :

The area under the curve y = `2sqrt(x)`, enclosed between the lines x = 0 and x = 1 is


Choose the correct option from the given alternatives :

The area of the circle x2 + y2 = 25 in first quadrant is 


Choose the correct option from the given alternatives : 

The area bounded by the parabola y2 = x and the line 2y = x is


Choose the correct option from the given alternatives :

The area bounded by y = `sqrt(x)` and the x = 2y + 3, X-axis in first quadrant is


Choose the correct option from the given alternatives :

The area bounded by the parabola y = x2 and the line y = x is


Solve the following :

Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = `pi/(3)`


Solve the following :

Find the area of the region lying between the parabolas : 4y2 = 9x and 3x2 = 16y


Solve the following :

Find the area of the region bounded by the straight line 2y = 5x + 7, X-axis and x = 2, x = 5.


Solve the following :

Find the area of the region bounded by the curve y = 4x2, Y-axis and the lines y = 1, y = 4.


The area of the region bounded by the curve y = sinx, X-axis and the lines x = 0, x = 4π is ______ sq.units


The area bounded by the curve y2 = x2, and the line x = 8 is ______


The area bounded by the ellipse `x^2/4 + y^2/25` = 1 and the line `x/2 + y/5` = 1 is ______ sq.units


Find the area bounded by the curve y2 = 36x, the line x = 2 in first quadrant 


Find the area bounded by the curve y = sin x, the lines x = 0 and x = `pi/2`


Find the area of the region bounded by the curve y = x2, the X−axis and the given lines x = 0, x = 3


Find the area of the region bounded by the parabola x2 = 4y and The X-axis and the line x = 1, x = 4


Find the area of the region bounded by the parabola y2 = 16x and the line x = 4


Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay


Find the area of the region bounded by the curve y2 = 4x, the X-axis and the lines x = 1, x = 4 for y ≥ 0.


Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0, y = 2 and y = 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×