English

Choose the correct option from the given alternatives : The area of the region bounded by x2 = 16y, y = 1, y = 4 and x = 0 in the first quadrant, is - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct option from the given alternatives : 

The area of the region bounded by x2 = 16y, y = 1, y = 4 and x = 0 in the first quadrant, is

Options

  • `(7)/(3)"sq units"`

  • `(8)/(3)"sq units"`

  • `(64)/(3)"sq units"`

  • `(56)/(3)"sq units"`

MCQ

Solution

`(56)/(3)"sq units"`.

shaalaa.com
Area Bounded by the Curve, Axis and Line
  Is there an error in this question or solution?
Chapter 5: Application of Definite Integration - Miscellaneous Exercise 5 [Page 190]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 5 Application of Definite Integration
Miscellaneous Exercise 5 | Q 1.18 | Page 190

RELATED QUESTIONS

Find the area of the region bounded by the parabola y2 = 16x and its latus rectum.


Find the area of the region bounded by the parabola: y = 4 – x2 and the X-axis.


Find the area of the region included between: y2 = 4x, and y = x


Find the area of the region included between: y = x2 and the line y = 4x


Find the area of the region included between: y2 = 4ax and the line y = x


Find the area of the region included between y = x2 + 3 and the line y = x + 3.


Choose the correct option from the given alternatives :

The area bounded by the regional 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by ______.


The area enclosed between the parabola y2 = 4x and line y = 2x is ______.


Choose the correct option from the given alternatives : 

The area bounded by the parabola y2 = x and the line 2y = x is


Choose the correct option from the given alternatives : 

The area enclosed between the curve y = cos 3x, 0 ≤ x ≤ `pi/(6)` and the X-axis is


Choose the correct option from the given alternatives :

The area bounded by y = `sqrt(x)` and the x = 2y + 3, X-axis in first quadrant is


Choose the correct option from the given alternatives :

The area bounded by the ellipse `x^2/a^2  y^2/b^2` = 1 and the line `x/a + y/b` = 1 is


Choose the correct option from the given alternatives :

The area bounded by the parabola y = x2 and the line y = x is


Choose the correct option from the given alternatives :

The area enclosed between the two parabolas y2 = 4x and y = x is


The area bounded by the curve y = tan x, X-axis and the line x = `pi/(4)` is ______.


Choose the correct option from the given alternatives :

The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by


Solve the following :

Find the area of the region bounded by the parabola y2 = x and the line y = x in the first quadrant.


Solve the following :

Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = `pi/(3)`


Solve the following :

Find the area of the region lying between the parabolas : 4y2 = 9x and 3x2 = 16y


Solve the following :

Find the area enclosed between the circle x2 + y2 = 1 and the line x + y = 1, lying in the first quadrant.


The area of the region bounded by the curve y = sinx, X-axis and the lines x = 0, x = 4π is ______ sq.units


The area bounded by the ellipse `x^2/4 + y^2/25` = 1 and the line `x/2 + y/5` = 1 is ______ sq.units


The area enclosed by the line 2x + 3y = 6 along X-axis and the lines x = 0, x = 3 is ______ sq.units


Find the area bounded by the curve y2 = 36x, the line x = 2 in first quadrant 


Find the area bounded by the curve y = sin x, the lines x = 0 and x = `pi/2`


Find the area of the region bounded by the parabola y2 = 32x and its Latus rectum in first quadrant


Find the area of the region bounded by the curve x2 = 12y, the Y−axis and the given lines y = 2, y = 4, x ≥ 0


Find the area of the region bounded by the curves x2 = 8y, y = 2, y = 4 and the Y-axis, lying in the first quadrant


Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay


Find the area of the region bounded by the curve y2 = 4x, the X-axis and the lines x = 1, x = 4 for y ≥ 0.


Find the area of the region bounded by the curve y = x2 and the line y = 4.


Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0, y = 2 and y = 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×