Advertisements
Advertisements
प्रश्न
Find the area of the shaded region in the figure as shown, in which DPQS is an equilateral triangle and ∠PQR = 90°.
उत्तर
In right-angled ΔPPQR,
PR2 = PQ2 + RQ2
⇒ RQ2 = PR2 - PQ2
= 202 - 122
= 400 - 144
= 256
⇒ RQ = 16cm
Area of ΔPQR
= `(1)/(2) xx "PQ" xx "RQ"`
= `(1)/(2) xx 12 xx 16`
= 96cm2
Area of equilateral ΔPQS
= `sqrt(3)/(4) xx ("side")^2`
= `sqrt(3)/(4) xx 12 xx 12`
= `36sqrt(3)"cm"^2`
Now,
area of shaded region
= Area of ΔPQR - Area of equilateral ΔPQS
= 96 - `36sqrt(3)`
= `12(8 - 3sqrt(3))"cm"^2`.
APPEARS IN
संबंधित प्रश्न
The base of an isosceles triangle is 24 cm and its area is 192 sq. cm. Find its perimeter.
Find the area of an isosceles triangle ABC in which AB = AC = 6 cm, ∠A = 90°. Also, find the length of perpendicular from A to BC.
Find the perimeter of an equilateral triangle whose area is `16sqrt(3)"cm"`.
In a right-angled triangle ABC, if ∠B = 90°, AB - BC = 2 cm; AC - BC = 4 and its perimeter is 24 cm, find the area of the triangle.
Find the area of an isosceles triangle whose perimeter is 72cm and the base is 20cm.
Each equal side of an isosceles triangle is 3cm less than the unequal side. The height of the perpendicular from the vertex to the unequal side is 3cm less than the equal side. If the area of the isosceles triangle is 108cm2, find the perimeter of the triangle.
A wire when bent in the form of a square encloses an area of 16 cm2. Find the area enclosed by it when the same wire is bent in the form of an equilateral triangle
A chessboard contains 64 equal square and the area of each square is 6.25cm2. A 2cm wide border is left inside of the board. Find the length of the side of the chessboard.
Each of the equal sides of an isosceles triangle is 4 cm greater than its height. If the base of the triangle is 24 cm; calculate the perimeter and the area of the triangle.
Two line segments are congruent, if they are of ______ lengths.