Advertisements
Advertisements
प्रश्न
The base of an isosceles triangle is 24 cm and its area is 192 sq. cm. Find its perimeter.
उत्तर
It is given that
Area = 192 sq.cm
base = 24 cm
Knowing the length of the equal side, a and base, b of an isosceles triangle, the area can be calculated using the formula,
A = `1/4 xx b xx sqrt (4a^2 - b^2`
Let 'a' be the length of an equal side.
Area = `1/4 xx b xx sqrt(4a^2 - b^2)`
192 = `1/4 xx 24 xx sqrt(4a^2 - 576)`
192 = `6 sqrt(4a^2 - 576)`
`sqrt(4a^2 - 576` = 32
4a2 - 576 = (32)2
4a2 - 576 = 1024
4a2 = 1024 + 576
4a2 = 1600
a = 20 cm
Hence, perimeter = 20 + 20 + 24
= 64 cm
APPEARS IN
संबंधित प्रश्न
Find the area of an equilateral triangle having perimeter of 18cm.
Find the area of the shaded region in the figure as shown, in which DPQS is an equilateral triangle and ∠PQR = 90°.
The area of an equilateral triangle is numerically equal to its perimeter. Find the length of its sides, correct two decimal places.
In a right-angled triangle PQR right-angled at Q, QR = x cm, PQ = (x + 7) cm and area = 30 cm2. Find the sides of the triangle.
In a right-angled triangle ABC, if ∠B = 90°, AB - BC = 2 cm; AC - BC = 4 and its perimeter is 24 cm, find the area of the triangle.
A wire when bent in the form of a square encloses an area of 16 cm2. Find the area enclosed by it when the same wire is bent in the form of a rectangle whose sides are in the ratio of 1 : 3
A wire when bent in the form of a square encloses an area of 16 cm2. Find the area enclosed by it when the same wire is bent in the form of an equilateral triangle
A chessboard contains 64 equal square and the area of each square is 6.25cm2. A 2cm wide border is left inside of the board. Find the length of the side of the chessboard.
The cross-section of a canal is a trapezium in shape. If the canal is 10m wide at the top, 6m wide at the bottom and the area of cross-section is 72 sq.m, determine its depth.
Two line segments are congruent, if they are of ______ lengths.