Advertisements
Advertisements
Question
The base of an isosceles triangle is 24 cm and its area is 192 sq. cm. Find its perimeter.
Solution
It is given that
Area = 192 sq.cm
base = 24 cm
Knowing the length of the equal side, a and base, b of an isosceles triangle, the area can be calculated using the formula,
A = `1/4 xx b xx sqrt (4a^2 - b^2`
Let 'a' be the length of an equal side.
Area = `1/4 xx b xx sqrt(4a^2 - b^2)`
192 = `1/4 xx 24 xx sqrt(4a^2 - 576)`
192 = `6 sqrt(4a^2 - 576)`
`sqrt(4a^2 - 576` = 32
4a2 - 576 = (32)2
4a2 - 576 = 1024
4a2 = 1024 + 576
4a2 = 1600
a = 20 cm
Hence, perimeter = 20 + 20 + 24
= 64 cm
APPEARS IN
RELATED QUESTIONS
Find the area of an isosceles triangle ABC in which AB = AC = 6 cm, ∠A = 90°. Also, find the length of perpendicular from A to BC.
Find the area of an equilateral triangle of side 20 cm.
Find the perimeter of an equilateral triangle whose area is `16sqrt(3)"cm"`.
The area of an equilateral triangle is numerically equal to its perimeter. Find the length of its sides, correct two decimal places.
In a right-angled triangle ABC, if ∠B = 90°, AB - BC = 2 cm; AC - BC = 4 and its perimeter is 24 cm, find the area of the triangle.
Find the area of an isosceles triangle whose perimeter is 50cm and the base is 24cm.
Find the base of an isosceles triangle whose area is 192cm2 and the length of one of the equal sides is 20cm.
A wire when bent in the form of a square encloses an area of 16 cm2. Find the area enclosed by it when the same wire is bent in the form of a rectangle whose sides are in the ratio of 1 : 3
A wire when bent in the form of a square encloses an area of 16 cm2. Find the area enclosed by it when the same wire is bent in the form of an equilateral triangle
The cross-section of a canal is a trapezium in shape. If the canal is 10m wide at the top, 6m wide at the bottom and the area of cross-section is 72 sq.m, determine its depth.