Advertisements
Advertisements
प्रश्न
In a right-angled triangle ABC, if ∠B = 90°, AB - BC = 2 cm; AC - BC = 4 and its perimeter is 24 cm, find the area of the triangle.
उत्तर
Given, Perimeter of ΔABC = 24cm
⇒ AB + BC + AC = 24cm ....(i)
AB - BC = 2cm ....(ii)
AC - BC = 4cm ....(iii)
Adding (ii) and (iii), we get
AB + AC - 2BC = 6cm
⇒ AB + AC = 6 + 2BC ....(iv)
Substituing (iv) un (i), we get
6 + 2BC + BC = 24
⇒ 3BC = 18
⇒ BC = 6cm
⇒ AB = 2 + BC
= 2 + 6
= 8cm
∴ Area of right-angled ΔABC
= `(1)/(2) xx "BC" xx "AB"`
= `(1)/(2) xx 8 xx 6`
= 24cm2.
APPEARS IN
संबंधित प्रश्न
The base of an isosceles triangle is 24 cm and its area is 192 sq. cm. Find its perimeter.
Find the area of an isosceles triangle ABC in which AB = AC = 6 cm, ∠A = 90°. Also, find the length of perpendicular from A to BC.
Find the perimeter of an equilateral triangle whose area is `16sqrt(3)"cm"`.
Find the area of an equilateral triangle having perimeter of 18cm.
The area of an equilateral triangle is numerically equal to its perimeter. Find the length of its sides, correct two decimal places.
In a right-angled triangle ABC, if ∠B = 90°, AB - BC = 2 cm; AC - BC = 4 and its perimeter is 24 cm, find the area of the triangle.
Find the area of an isosceles triangle whose perimeter is 50cm and the base is 24cm.
A wire when bent in the form of a square encloses an area of 16 cm2. Find the area enclosed by it when the same wire is bent in the form of an equilateral triangle
The cross-section of a canal is a trapezium in shape. If the canal is 10m wide at the top, 6m wide at the bottom and the area of cross-section is 72 sq.m, determine its depth.
If in an isosceles triangle, each of the base angles is 40°, then the triangle is ______.