Advertisements
Advertisements
प्रश्न
In a right-angled triangle ABC, if ∠B = 90°, AB - BC = 2 cm; AC - BC = 4 and its perimeter is 24 cm, find the area of the triangle.
उत्तर
Given, Perimeter of ΔABC = 24cm
⇒ AB + BC + AC = 24cm ....(i)
AB - BC = 2cm ....(ii)
AC - BC = 4cm ....(iii)
Adding (ii) and (iii), we get
AB + AC - 2BC = 6cm
⇒ AB + AC = 6 + 2BC ....(iv)
Substituing (iv) un (i), we get
6 + 2BC + BC = 24
⇒ 3BC = 18
⇒ BC = 6cm
⇒ AB = 2 + BC
= 2 + 6
= 8cm
∴ Area of right-angled ΔABC
= `(1)/(2) xx "BC" xx "AB"`
= `(1)/(2) xx 8 xx 6`
= 24cm2.
APPEARS IN
संबंधित प्रश्न
The base of an isosceles triangle is 24 cm and its area is 192 sq. cm. Find its perimeter.
Find the area of an equilateral triangle of side 20 cm.
Find the area of the shaded region in the figure as shown, in which DPQS is an equilateral triangle and ∠PQR = 90°.
The area of an equilateral triangle is numerically equal to its perimeter. Find the length of its sides, correct two decimal places.
In a right-angled triangle ABC, if ∠B = 90°, AB - BC = 2 cm; AC - BC = 4 and its perimeter is 24 cm, find the area of the triangle.
Find the area of an isosceles triangle whose perimeter is 72cm and the base is 20cm.
Find the base of an isosceles triangle whose area is 192cm2 and the length of one of the equal sides is 20cm.
Each equal side of an isosceles triangle is 3cm less than the unequal side. The height of the perpendicular from the vertex to the unequal side is 3cm less than the equal side. If the area of the isosceles triangle is 108cm2, find the perimeter of the triangle.
A chessboard contains 64 equal square and the area of each square is 6.25cm2. A 2cm wide border is left inside of the board. Find the length of the side of the chessboard.
Two line segments are congruent, if they are of ______ lengths.