Advertisements
Advertisements
प्रश्न
Find the differential dy for the following functions:
y = `"e"^(x^2 - 5x + 7) cos(x^2 - 1)`
उत्तर
dy = `{"e"^(x^2 - 5x + 7) [- sin (x^2 - 1)(2x)] + cos(x^2 - 1)["e"^(x^2 - 5x + 7) (2x - 5)]} "d"x`
dy = `{"e"^(x^2 - 5x + 7) [- 2x sin (x^2 - 1) + (2x - 5) cos(x^2 - 1)]} "d"x`
dy = `"e"^(x^2 -5x + 7) {(2x - 5) cos(x^2 - 1) - 2x sin(x^2 - 1)} "d"x`
APPEARS IN
संबंधित प्रश्न
Let f(x) = `root(3)(x)`. Find the linear approximation at x = 27. Use the linear approximation to approximate `root(3)(27.2)`
Use the linear approximation to find approximate values of `(123)^(2/3)`
Use the linear approximation to find approximate values of `root(3)(26)`
Find a linear approximation for the following functions at the indicated points.
f(x) = x3 – 5x + 12, x0 = 2
Find a linear approximation for the following functions at the indicated points.
g(x) = `sqrt(x^2 + 9)`, x0 = – 4
The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
Absolute error
Find the differential dy for the following functions:
y = `(1 - 2x)^3/(3 - 4x)`
Find df for f(x) = x2 + 3x and evaluate it for x = 3 and dx = 0.02
Find Δf and df for the function f for the indicated values of x, Δx and compare:
f(x) = x3 – 2x2, x = 2, Δx = dx = 0.5
Find Δf and df for the function f for the indicated values of x, Δx and compare:
f(x) = x2 + 2x + 3, x = – 0.5, Δx = dx = 0.1
The trunk of a tree has a diameter of 30 cm. During the following year, the circumference grew 6 cm. Approximately how much did the tree diameter grow?
An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 mm and the radius to the outside of the shell is 5.3 mm, find the volume of the shell approximately
In a newly developed city, it is estimated that the voting population (in thousands) will increase according to V(t) = 30 + 12t2 – t3, 0 ≤ t ≤ 8 where t is the time in years. Find the approximate change in voters for the time change from 4 to `4 1/6` years
The relation between the number of words y a person learns in x hours is given by y = `sqrt(x), 0 ≤ x ≤ 9`. What is the approximate number of words learned when x changes from 4 to 4.1 hours?
Choose the correct alternative:
The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?
Choose the correct alternative:
The change in the surface area S = 6x2 of a cube when the edge length varies from x0 to x0 + dx is
Choose the correct alternative:
The approximate change in volume V of a cube of side x meters caused by increasing the side by 1% is
Choose the correct alternative:
Linear approximation for g(x) = cos x at x = `pi/2` is