Advertisements
Advertisements
प्रश्न
Find the mean number of heads in three tosses of a fair coin.
उत्तर
Let X denote the success of getting heads.
Therefore, the sample space is
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
It can be seen that X can take the value of 0, 1, 2 or 3
∴ P(X = 0) = P(TTT)
= P(T) . P(T) . P(T)
= `1/2 xx 1/2 xx 1/2`
= `1/8`
∴ P(X = 1) = P(HHT) + P(HTH) + P(THH)
= `1/2 xx 1/2 xx 1/2 + 1/2 xx 1/2 xx 1/2 + 1/2 xx 1/2 xx 1/2`
= `3/8`
∴ P(X = 2) = P(HHT) + P(HTH) + P(THH)
`1/2 xx 1/2 xx 1/2 + 1/2 xx 1/2 xx 1/2 + 1/2 xx 1/2 xx 1/2`
= `3/8`
∴ P(X = 3) = P(HHH)
= `1/2 xx 1/2 xx 1/2`
= `1/8`
Therefore, the required probability distribution is as follows.
X | 0 | 1 | 2 | 3 |
P(X) | `1/8` | `3/8` | `3/8` | `1/8` |
Mean of X E(X), µ =`sum X_iP(X_i)`
= `0 xx1/8 + 1xx3/8 + 2xx3/8 + 3xx1/8`
= `0 + 3/8 + 3/4 + 3/8`
= `12/8`
= 1.5
APPEARS IN
संबंधित प्रश्न
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P(X) | 0.1 | 0.6 | 0.3 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
Y | −1 | 0 | 1 |
P(Y) | 0.6 | 0.1 | 0.2 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | -1 | -2 |
P(X) | 0.3 | 0.4 | 0.3 |
Find expected value and variance of X for the following p.m.f.
x | -2 | -1 | 0 | 1 | 2 |
P(X) | 0.2 | 0.3 | 0.1 | 0.15 | 0.25 |
Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the standard deviation of X.
The following is the p.d.f. of r.v. X:
f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
P(x > 2)
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise
Find probability that X is negative
Find k, if the following function represents p.d.f. of r.v. X.
f(x) = kx(1 – x), for 0 < x < 1 and = 0, otherwise.
Also, find `P(1/4 < x < 1/2) and P(x < 1/2)`.
If a r.v. X has p.d.f.,
f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).
Choose the correct option from the given alternative :
P.d.f. of a.c.r.v X is f (x) = 6x (1 − x), for 0 ≤ x ≤ 1 and = 0, otherwise (elsewhere)
If P (X < a) = P (X > a), then a =
If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______.
Choose the correct option from the given alternative:
Find expected value of and variance of X for the following p.m.f.
X | -2 | -1 | 0 | 1 | 2 |
P(x) | 0.3 | 0.3 | 0.1 | 0.05 | 0.25 |
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is positive
The probability distribution of discrete r.v. X is as follows :
x = x | 1 | 2 | 3 | 4 | 5 | 6 |
P[x=x] | k | 2k | 3k | 4k | 5k | 6k |
(i) Determine the value of k.
(ii) Find P(X≤4), P(2<X< 4), P(X≥3).
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(0.5 ≤ x ≤ 1.5)
Find the probability distribution of number of number of tails in three tosses of a coin
Choose the correct alternative :
X: is number obtained on upper most face when a fair die….thrown then E(X) = _______.
X is r.v. with p.d.f. f(x) = `"k"/sqrt(x)`, 0 < x < 4 = 0 otherwise then x E(X) = _______
Choose the correct alternative :
If X ∼ B`(20, 1/10)` then E(X) = _______
If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)` for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.
State whether the following is True or False :
If P(X = x) = `"k"[(4),(x)]` for x = 0, 1, 2, 3, 4 , then F(5) = `(1)/(4)` when F(x) is c.d.f.
State whether the following is True or False :
x | – 2 | – 1 | 0 | 1 | 2 |
P(X = x) | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
If F(x) is c.d.f. of discrete r.v. X then F(–3) = 0
State whether the following is True or False :
If p.m.f. of discrete r.v. X is
x | 0 | 1 | 2 |
P(X = x) | q2 | 2pq | p2 |
then E(x) = 2p.
If r.v. X assumes values 1, 2, 3, ……. n with equal probabilities then E(X) = `("n" + 1)/(2)`
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Determine the value of k.
Solve the following problem :
The p.m.f. of a r.v.X is given by
`P(X = x) = {(((5),(x)) 1/2^5", ", x = 0", "1", "2", "3", "4", "5.),(0,"otherwise"):}`
Show that P(X ≤ 2) = P(X ≤ 3).
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | 1 | 2 | 3 | ... | n |
P(X = x) | `(1)/"n"` | `(1)/"n"` | `(1)/"n"` | ... | `(1)/"n"` |
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
X | 0 | 1 | 2 | 3 | 4 | 5 |
P(X = x) | `(1)/(32)` | `(5)/(32)` | `(10)/(32)` | `(10)/(32)` | `(5)/(32)` | `(1)/(32)` |
Solve the following problem :
Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.
The probability distribution of X is as follows:
X | 0 | 1 | 2 | 3 | 4 |
P(X = x) | 0.1 | k | 2k | 2k | k |
Find k and P[X < 2]
If p.m.f. of r.v. X is given below.
x | 0 | 1 | 2 |
P(x) | q2 | 2pq | p2 |
then Var(x) = ______
The probability distribution of a discrete r.v.X is as follows.
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Complete the following activity.
Solution: Since `sum"p"_"i"` = 1
P(X ≤ 4) = `square + square + square + square = square`
The probability distribution of a discrete r.v. X is as follows:
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
- Determine the value of k.
- Find P(X ≤ 4)
- P(2 < X < 4)
- P(X ≥ 3)
The probability distribution of X is as follows:
x | 0 | 1 | 2 | 3 | 4 |
P[X = x] | 0.1 | k | 2k | 2k | k |
Find
- k
- P[X < 2]
- P[X ≥ 3]
- P[1 ≤ X < 4]
- P(2)
The p.m.f. of a random variable X is as follows:
P (X = 0) = 5k2, P(X = 1) = 1 – 4k, P(X = 2) = 1 – 2k and P(X = x) = 0 for any other value of X. Find k.