हिंदी

Find the mean number of heads in three tosses of a fair coin. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the mean number of heads in three tosses of a fair coin.

योग

उत्तर

Let X denote the success of getting heads.

Therefore, the sample space is

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

It can be seen that X can take the value of 0, 1, 2 or 3

∴ P(X = 0) = P(TTT)

= P(T) . P(T) . P(T)

= `1/2 xx 1/2 xx 1/2`

= `1/8`

∴ P(X = 1) = P(HHT) + P(HTH) + P(THH)

= `1/2 xx 1/2 xx 1/2 + 1/2 xx 1/2 xx 1/2 + 1/2 xx 1/2 xx 1/2`

= `3/8`

∴ P(X = 2) = P(HHT) + P(HTH) + P(THH)

`1/2 xx 1/2 xx 1/2 + 1/2 xx 1/2 xx 1/2 + 1/2 xx 1/2 xx 1/2`

= `3/8`

∴ P(X = 3) = P(HHH)

= `1/2 xx 1/2 xx 1/2`

= `1/8`

Therefore, the required probability distribution is as follows.

X 0 1 2 3
P(X) `1/8` `3/8` `3/8` `1/8`

Mean of X E(X), µ =`sum X_iP(X_i)`

= `0 xx1/8 + 1xx3/8 + 2xx3/8 + 3xx1/8`

= `0 + 3/8 + 3/4 + 3/8`

= `12/8`

= 1.5

shaalaa.com
Probability Distribution of Discrete Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Probability Distributions - Exercise 7.1 [पृष्ठ २३३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Probability Distributions
Exercise 7.1 | Q 11 | पृष्ठ २३३

संबंधित प्रश्न

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.1 0.6 0.3

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

Y −1 0 1
P(Y) 0.6 0.1 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

0 -1 -2
P(X) 0.3 0.4 0.3

Find expected value and variance of X for the following p.m.f.

x -2 -1 0 1 2
P(X) 0.2 0.3 0.1 0.15 0.25

Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the standard deviation of X.


The following is the p.d.f. of r.v. X:

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

 P(x > 2)


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Find probability that X is negative


Find k, if the following function represents p.d.f. of r.v. X.

f(x) = kx(1 – x), for 0 < x < 1 and = 0, otherwise.

Also, find `P(1/4 < x < 1/2) and P(x < 1/2)`.


If a r.v. X has p.d.f., 

f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).


Choose the correct option from the given alternative :

P.d.f. of a.c.r.v X is f (x) = 6x (1 − x), for 0 ≤ x ≤ 1 and = 0, otherwise (elsewhere)

If P (X < a) = P (X > a), then a =


If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______. 


Choose the correct option from the given alternative:

Find expected value of and variance of X for the following p.m.f.

X -2 -1 0 1 2
P(x) 0.3 0.3 0.1 0.05 0.25

Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is positive


The probability distribution of discrete r.v. X is as follows :

x = x 1 2 3 4 5 6
P[x=x] k 2k 3k 4k 5k 6k

(i) Determine the value of k.

(ii) Find P(X≤4), P(2<X< 4), P(X≥3).


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

Calculate: P(0.5 ≤ x ≤ 1.5)


Find the probability distribution of number of number of tails in three tosses of a coin


Choose the correct alternative :

X: is number obtained on upper most face when a fair die….thrown then E(X) = _______.


X is r.v. with p.d.f. f(x) = `"k"/sqrt(x)`, 0 < x < 4 = 0 otherwise then x E(X) = _______


Choose the correct alternative :

If X ∼ B`(20, 1/10)` then E(X) = _______


If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)` for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.


State whether the following is True or False :

If P(X = x) = `"k"[(4),(x)]` for x = 0, 1, 2, 3, 4 , then F(5) = `(1)/(4)` when F(x) is c.d.f.


State whether the following is True or False :

x – 2 – 1 1 2
P(X = x) 0.2 0.3 0.15 0.25 0.1

If F(x) is c.d.f. of discrete r.v. X then F(–3) = 0


State whether the following is True or False :

If p.m.f. of discrete r.v. X is

x 0 1 2
P(X = x) q2 2pq p2 

then E(x) = 2p.


If r.v. X assumes values 1, 2, 3, ……. n with equal probabilities then E(X) = `("n" + 1)/(2)`


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Determine the value of k.


Solve the following problem :

The p.m.f. of a r.v.X is given by

`P(X = x) = {(((5),(x)) 1/2^5", ", x = 0", "1", "2", "3", "4", "5.),(0,"otherwise"):}`

Show that P(X ≤ 2) = P(X ≤ 3).


Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

x 1 2 3 ... n
P(X = x) `(1)/"n"` `(1)/"n"` `(1)/"n"` ... `(1)/"n"`

Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

X 0 1 2 3 4 5
P(X = x) `(1)/(32)` `(5)/(32)` `(10)/(32)` `(10)/(32)` `(5)/(32)` `(1)/(32)`

Solve the following problem :

Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.


The probability distribution of X is as follows:

X 0 1 2 3 4
P(X = x) 0.1 k 2k 2k k

Find k and P[X < 2]


If p.m.f. of r.v. X is given below.

x 0 1 2
P(x) q2 2pq p2

then Var(x) = ______


The probability distribution of a discrete r.v.X is as follows.

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k

Complete the following activity.

Solution: Since `sum"p"_"i"` = 1

P(X ≤ 4) = `square + square + square + square = square`


The probability distribution of a discrete r.v. X is as follows:

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k
  1. Determine the value of k.
  2. Find P(X ≤ 4)
  3. P(2 < X < 4)
  4. P(X ≥ 3)

The probability distribution of X is as follows:

x 0 1 2 3 4
P[X = x] 0.1 k 2k 2k k

Find

  1. k
  2. P[X < 2]
  3. P[X ≥ 3]
  4. P[1 ≤ X < 4]
  5. P(2)

The p.m.f. of a random variable X is as follows:

P (X = 0) = 5k2, P(X = 1) = 1 – 4k, P(X = 2) = 1 – 2k and P(X = x) = 0 for any other value of X. Find k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×