हिंदी

Solve the following problem : Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.

योग

उत्तर

Let X ~ B(n, p)
E(X) = 5 and Var (X) = 2.5      …[Given]
But E(X) = np = 5 and
Var (X) = npq = 2.5
∴ 5(q) = 2.5

∴ q = `(2.5)/(5) = (1)/(2)`

∴ p = 1 – q = `1 - (1)/(2) = (1)/(2)`

Now, np = 5

∴ `"n"(1/2)` = 5

∴ n = 10.

shaalaa.com
Probability Distribution of Discrete Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Probability Distributions - Part II [पृष्ठ १५६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Probability Distributions
Part II | Q 1.02 | पृष्ठ १५६

संबंधित प्रश्न

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.1 0.6 0.3

The following is the p.d.f. of r.v. X:

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

 P(x > 2)


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise

 Verify whether f (x) is p.d.f. of r.v. X.


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Find probability that X is negative


Choose the correct option from the given alternative :

P.d.f. of a.c.r.v X is f (x) = 6x (1 − x), for 0 ≤ x ≤ 1 and = 0, otherwise (elsewhere)

If P (X < a) = P (X > a), then a =


Choose the correct option from the given alternative:

If the p.d.f of a.c.r.v. X is f (x) = 3 (1 − 2x2 ), for 0 < x < 1 and = 0, otherwise (elsewhere) then the c.d.f of X is F(x) =


Choose the correct option from the given alternative:

If p.m.f. of a d.r.v. X is P (X = x) = `((c_(x)^5 ))/2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise If a = P (X ≤ 2) and b = P (X ≥ 3), then E (X ) =


Solve the following problem :

A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.


The following is the c.d.f. of r.v. X:

X −3 −2 −1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1

Find p.m.f. of X.
i. P(–1 ≤ X ≤ 2)
ii. P(X ≤ 3 / X > 0).


Find the probability distribution of number of heads in four tosses of a coin


The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.


X is r.v. with p.d.f. f(x) = `"k"/sqrt(x)`, 0 < x < 4 = 0 otherwise then x E(X) = _______


Solve the following problem :

The following is the c.d.f of a r.v.X.

x – 3 – 2 – 1 0 1 2 3 4
F (x) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1

Find the probability distribution of X and P(–1 ≤ X ≤ 2).


If a d.r.v. X has the following probability distribution:

X –2 –1 0 1 2 3
P(X = x) 0.1 k 0.2 2k 0.3 k

then P(X = –1) is ______


Find mean for the following probability distribution.

X 0 1 2 3
P(X = x) `1/6` `1/3` `1/3` `1/6`

Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as number greater than 4 appears on at least one die.


The probability distribution of a discrete r.v.X is as follows.

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k

Complete the following activity.

Solution: Since `sum"p"_"i"` = 1

P(X ≤ 4) = `square + square + square + square = square`


The probability distribution of a discrete r.v. X is as follows:

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k
  1. Determine the value of k.
  2. Find P(X ≤ 4)
  3. P(2 < X < 4)
  4. P(X ≥ 3)

If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)`; for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.


The value of discrete r.v. is generally obtained by counting.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×