Advertisements
Advertisements
प्रश्न
Find mean for the following probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | `1/6` | `1/3` | `1/3` | `1/6` |
उत्तर
Mean of the given distribution is
E(X) = `sumx_"i" "P"(x_"i")`
= `0(1/6) + 1(1/3) + 2(1/3) + 3(1/6)`
= `0 + 1/3 + 2/3 + 1/2`
= `3/2`
APPEARS IN
संबंधित प्रश्न
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P(X) | 0.4 | 0.4 | 0.2 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer
Z | 3 | 2 | 1 | 0 | −1 |
P(Z) | 0.3 | 0.2 | 0.4 | 0 | 0.05 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
Y | −1 | 0 | 1 |
P(Y) | 0.6 | 0.1 | 0.2 |
A random variable X has the following probability distribution:
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine:
- k
- P(X < 3)
- P( X > 4)
Find the mean number of heads in three tosses of a fair coin.
The following is the p.d.f. of r.v. X :
f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise
P ( 1 < x < 2 )
Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.
Find the probability that the waiting time is more than 4 minutes.
If a r.v. X has p.d.f.,
f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution :
x | -2 | -1 | 0 | 1 | 2 | 3 |
p(X=x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P (X = −1) =
Solve the following problem :
A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.
The following is the c.d.f. of r.v. X
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 |
*1 |
P (–1 ≤ X ≤ 2)
The probability distribution of discrete r.v. X is as follows :
x = x | 1 | 2 | 3 | 4 | 5 | 6 |
P[x=x] | k | 2k | 3k | 4k | 5k | 6k |
(i) Determine the value of k.
(ii) Find P(X≤4), P(2<X< 4), P(X≥3).
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)
Find the probability distribution of number of number of tails in three tosses of a coin
Find the probability distribution of number of heads in four tosses of a coin
Find k if the following function represents the p. d. f. of a r. v. X.
f(x) = `{(kx, "for" 0 < x < 2),(0, "otherwise."):}`
Also find `"P"[1/4 < "X" < 1/2]`
Given that X ~ B(n,p), if n = 10, E(X) = 8, find Var(X).
X is r.v. with p.d.f. f(x) = `"k"/sqrt(x)`, 0 < x < 4 = 0 otherwise then x E(X) = _______
State whether the following is True or False :
x | – 2 | – 1 | 0 | 1 | 2 |
P(X = x) | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
If F(x) is c.d.f. of discrete r.v. X then F(–3) = 0
Solve the following problem :
The p.m.f. of a r.v.X is given by
`P(X = x) = {(((5),(x)) 1/2^5", ", x = 0", "1", "2", "3", "4", "5.),(0,"otherwise"):}`
Show that P(X ≤ 2) = P(X ≤ 3).
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | 1 | 2 | 3 |
P(X = x) | `(1)/(5)` | `(2)/(5)` | `(2)/(5)` |
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | – 1 | 0 | 1 |
P(X = x) | `(1)/(5)` | `(2)/(5)` | `(2)/(5)` |
Solve the following problem :
Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.
If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for" x = 1"," 2"," 3"," .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______
If a d.r.v. X has the following probability distribution:
X | –2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P(X = –1) is ______
If a d.r.v. X has the following probability distribution:
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X = x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
then k = ______
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as number greater than 4 appears on at least one die.
The values of discrete r.v. are generally obtained by ______
Using the following activity, find the expected value and variance of the r.v.X if its probability distribution is as follows.
x | 1 | 2 | 3 |
P(X = x) | `1/5` | `2/5` | `2/5` |
Solution: µ = E(X) = `sum_("i" = 1)^3 x_"i""p"_"i"`
E(X) = `square + square + square = square`
Var(X) = `"E"("X"^2) - {"E"("X")}^2`
= `sum"X"_"i"^2"P"_"i" - [sum"X"_"i""P"_"i"]^2`
= `square - square`
= `square`
The probability distribution of a discrete r.v. X is as follows:
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
- Determine the value of k.
- Find P(X ≤ 4)
- P(2 < X < 4)
- P(X ≥ 3)
If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)`; for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.
Given below is the probability distribution of a discrete random variable x.
X | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | K | 0 | 2K | 5K | K | 3K |
Find K and hence find P(2 ≤ x ≤ 3)