हिंदी

Solve the following problem : A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.

योग

उत्तर १

When a fair coin is tossed 4 times then the sample space is

S = {HHHH,HHHT,HHTH, HTHH, THHH, HHTT, HTHT, HTTH, THHT, THTH, TTHH, HTTT, THTT, TTHT, TTTH, TTTT}

∴ n (S) = 16

X denotes the number of heads.

∴ X can take the value 0, 1, 2, 3, 4 When X = 0,

then X= {TTTT} 

∴ n (X) = 1

∴ P (X=0) = `(n(x))/(n(s))= 1/16 = {""^4C_0}/16`

When X = 1, then

X = {HTTT, THTT, TTHT, TTTH}

∴ n (X) = 4

∴ P (X=1) = `(n(x))/(n(s)) = 4/16 = {""^4C_1}/16`

When X = 2, then

X ={ HHTT, HTHT, HTTH, THHT, THTH, TTHH}

∴ n (X) = 6

∴ P (X=2) = `(n(x))/(n(s)) = 6/16 = {""^4C_2}/16`

When X = 3, then

X ={ HHHT, HHTH, HTHH, THHH}

∴ n (X) = 4

∴ P (X=3) = `(n(x))/(n(s))= 4/16 = {""^4C_3}/16`

When X = 4, then

X = {HHHH}

∴ n (X) = 1

∴ P (X=4) = `(n(x))/(n(s)) = 1/16 = {""^4C_4}/16`

∴ the probability distribution of X is as follows :

x 0 1      
p(x) `1/16` `4/16` `6/16` `4/16` `1/16`

Also, the formula for p.m.f. of X is

P (x) = `{""^4C_x}/16`

x = 0,1,2,3,4

= 0 otherwise.

shaalaa.com

उत्तर २

When a fair coin is tossed 4 times then the sample space is

S = {HHHH,HHHT,HHTH, HTHH, THHH, HHTT, HTHT, HTTH, THHT, THTH, TTHH, HTTT, THTT, TTHT, TTTH, TTTT}

∴ n (S) = 16

X denotes the number of heads.

∴ X can take the value 0, 1, 2, 3, 4 When X = 0,

then X= {TTTT} 

∴ n (X) = 1

∴ P (X=0) = `(n(x))/(n(s))= 1/16 = {""^4C_0}/16`

When X = 1, then

X = {HTTT, THTT, TTHT, TTTH}

∴ n (X) = 4

∴ P (X=1) = `(n(x))/(n(s)) = 4/16 = {""^4C_1}/16`

When X = 2, then

X ={HHTT, HTHT, HTTH, THHT, THTH, TTHH}

∴ n (X) = 6

∴ P (X=2) = `(n(x))/(n(s)) = 6/16 = {""^4C_2}/16`

When X = 3, then

X ={ HHHT, HHTH, HTHH, THHH}

∴ n (X) = 4

∴ P (X=3) = `(n(x))/(n(s))= 4/16 = {""^4C_3}/16`

When X = 4, then

X = {HHHH}

∴ n (X) = 1

∴ P (X=4) = `(n(x))/(n(s)) = 1/16 = {""^4C_4}/16`

∴ the probability distribution of X is as follows :

x 0 1 2 3 4
p(x) `1/16` `4/16` `6/16` `4/16` `1/16`

Also, the formula for p.m.f. of X is

P (x) = `{""^4C_x}/16`

x = 0,1,2,3,4

= 0 otherwise.

shaalaa.com

उत्तर ३

A coin is tossed 4 times.
∴ n(S) = 24 = 16
Let X be the number of heads.
Thus, X can take values 0, 1, 2, 3, 4

When X = 0, i.e., all tails {TTTT},
n(X) = `""^4"C"_0` = 1

∴ P(X = 0) = `(1)/(16)`

When X = 1, i.e., only one head.
n(X) = `""^4"C"_1` = 4

∴ P(X = 1) = `(4)/(16)`

When X = 2, i.e., two heads.

n(X) = `""^4"C"_2 = (4!)/(2!2!)` = 6

∴ P(X = 2) = `(6)/(16)`

When X = 3, i.e., three heads.
n(X) = `""^4"C"_3` = 4

∴ P(X = 3) = `(4)/(16) = (1)/(14)`

When X = 4, i.e., all heads ≅ {HHHH},
n(X) = `""^4"C"_4` = 1

∴ P(X = 4) = `(1)/(16)`

Then,

X 0 1 2 3 4
P(X) `(1)/(16)` `(4)/(16)` `(6)/(16)` `(4)/(16)` `(1)/(16)`

∴ Formula for p.m.f. of X is

P(X) = `(((4),(x)))/(16), x` = 0, 1, 2, 3, 4
= 0,   otherwise.

shaalaa.com
Probability Distribution of Discrete Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Probability Distributions - Part I [पृष्ठ १५५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Probability Distributions
Part I | Q 1.06 | पृष्ठ १५५
बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Probability Distributions
Miscellaneous Exercise 2 | Q 6 | पृष्ठ २४२

संबंधित प्रश्न

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.4 0.4 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2 3 4
P(X) 0.1 0.5 0.2 − 0.1 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.1 0.6 0.3

It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise

 Verify whether f (x) is p.d.f. of r.v. X.


Find k if the following function represent p.d.f. of r.v. X

f (x) = kx, for 0 < x < 2 and = 0 otherwise, Also find P `(1/ 4 < x < 3 /2)`.


Find k, if the following function represents p.d.f. of r.v. X.

f(x) = kx(1 – x), for 0 < x < 1 and = 0, otherwise.

Also, find `P(1/4 < x < 1/2) and P(x < 1/2)`.


If a r.v. X has p.d.f., 

f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).


If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______. 


Choose the correct option from the given alternative:

If a d.r.v. X takes values 0, 1, 2, 3, . . . which probability P (X = x) = k (x + 1)·5 −x , where k is a constant, then P (X = 0) =


Choose the correct option from the given alternative :

If p.m.f. of a d.r.v. X is P (x) = `c/ x^3` , for x = 1, 2, 3 and = 0, otherwise (elsewhere) then E (X ) =


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution :

x -2 -1 0 1 2 3
p(X=x) 0.1 k 0.2 2k 0.3 k

then P (X = −1) =


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

Amount of syrup prescribed by physician.


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

The person on the high protein diet is interested gain of weight in a week.


The following is the c.d.f. of r.v. X:

X −3 −2 −1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1

Find p.m.f. of X.
i. P(–1 ≤ X ≤ 2)
ii. P(X ≤ 3 / X > 0).


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

1

P (X ≤ 3/ X > 0)


The probability distribution of discrete r.v. X is as follows :

x = x 1 2 3 4 5 6
P[x=x] k 2k 3k 4k 5k 6k

(i) Determine the value of k.

(ii) Find P(X≤4), P(2<X< 4), P(X≥3).


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

Calculate: P(x≤1)


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)


Find the probability distribution of number of number of tails in three tosses of a coin


Find the probability distribution of number of heads in four tosses of a coin


Given that X ~ B(n,p), if n = 25, E(X) = 10, find p and Var (X).


Given that X ~ B(n,p), if n = 10, E(X) = 8, find Var(X).


Choose the correct alternative :

X: is number obtained on upper most face when a fair die….thrown then E(X) = _______.


The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.


Choose the correct alternative :

If X ∼ B`(20, 1/10)` then E(X) = _______


Fill in the blank :

If X is discrete random variable takes the value x1, x2, x3,…, xn then \[\sum\limits_{i=1}^{n}\text{P}(x_i)\] = _______


If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)` for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.


If F(x) is distribution function of discrete r.v.X with p.m.f. P(x) = `k^4C_x` for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(–1) = _______


State whether the following is True or False :

x – 2 – 1 1 2
P(X = x) 0.2 0.3 0.15 0.25 0.1

If F(x) is c.d.f. of discrete r.v. X then F(–3) = 0


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Determine the value of k.


Solve the following problem :

The following is the c.d.f of a r.v.X.

x – 3 – 2 – 1 0 1 2 3 4
F (x) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1

Find the probability distribution of X and P(–1 ≤ X ≤ 2).


Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

x 1 2 3
P(X = x) `(1)/(5)` `(2)/(5)` `(2)/(5)`

Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

x 1 2 3 ... n
P(X = x) `(1)/"n"` `(1)/"n"` `(1)/"n"` ... `(1)/"n"`

Solve the following problem :

Let the p. m. f. of the r. v. X be

`"P"(x) = {((3 - x)/(10)", ","for"  x = -1", "0", "1", "2.),(0,"otherwise".):}`
Calculate E(X) and Var(X).


Solve the following problem :

Let X∼B(n,p) If n = 10 and E(X)= 5, find p and Var(X).


If a d.r.v. X takes values 0, 1, 2, 3, … with probability P(X = x) = k(x + 1) × 5–x, where k is a constant, then P(X = 0) = ______


The p.m.f. of a d.r.v. X is P(X = x) = `{{:(((5),(x))/2^5",", "for"  x = 0","  1","  2","  3","  4","  5),(0",", "otherwise"):}` If a = P(X ≤ 2) and b = P(X ≥ 3), then


If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for"  x = 1","  2","  3","  .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______


If a d.r.v. X has the following probability distribution:

X –2 –1 0 1 2 3
P(X = x) 0.1 k 0.2 2k 0.3 k

then P(X = –1) is ______


Find mean for the following probability distribution.

X 0 1 2 3
P(X = x) `1/6` `1/3` `1/3` `1/6`

Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as number greater than 4 appears on at least one die.


Choose the correct alternative:

f(x) is c.d.f. of discete r.v. X whose distribution is

xi – 2 – 1 0 1 2
pi 0.2 0.3 0.15 0.25 0.1

then F(– 3) = ______


If p.m.f. of r.v. X is given below.

x 0 1 2
P(x) q2 2pq p2

then Var(x) = ______


The values of discrete r.v. are generally obtained by ______


The probability distribution of a discrete r.v.X is as follows.

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k

Complete the following activity.

Solution: Since `sum"p"_"i"` = 1

k = `square`


The following function represents the p.d.f of a.r.v. X

f(x) = `{{:((kx;, "for"  0 < x < 2, "then the value of K is ")),((0;,  "otherwise")):}` ______ 


The probability distribution of X is as follows:

x 0 1 2 3 4
P[X = x] 0.1 k 2k 2k k

Find

  1. k
  2. P[X < 2]
  3. P[X ≥ 3]
  4. P[1 ≤ X < 4]
  5. P(2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×