हिंदी

The following is the c.d.f. of r.v. X: X −3 −2 −1 0 1 2 3 4 F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1 Find p.m.f. of X.i. P(–1 ≤ X ≤ 2)ii. P(X ≤ 3 / X > 0). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The following is the c.d.f. of r.v. X:

X −3 −2 −1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1

Find p.m.f. of X.
i. P(–1 ≤ X ≤ 2)
ii. P(X ≤ 3 / X > 0).

योग

उत्तर

From the given table

F(−3)= 0.1, F(−2) = 0.3, F(−1) = 0.5

F(0) = 0.65, f(1) = 0.75, F(2) = 0.85

F(3) =  0.9, F(4) = 1

P(X =−3) = F(−3) = 0.1

P(X= −2)= F(− 2) − F(−3) = 0.3 − 0.1 = 0.2

P(X= −1) = F(−1) − F(−2) = 0.5 − 0.3 = 0.2

P(X = 0) = F(0) − F(−1) = 0.65 − 0.5 = 0.15

P(X = 1) = F(1) − F(0) = 0.75 − 0.65 = 0.1

P(X = 2) = F(2) − F(1) = 0.85 − 0.75 = 0.1

P(X = 3) = F(3) − F(2) = 0.9 − 0.85 = 0.05

P(X = 4) = F(4) − F(3) = 1 − 0.9 = 0.1

∴ The probability distribution of X is as follows:

X = x −3 −2 −1 0 1 2 3 4
P(X = x) 0.1 0.2 0.2 0.15 0.1 0.1 00.5 0.1

i. P(–1 ≤ X ≤ 2)

= P(X = –1 or X = 0 or X = 1 or X = 2)

= P(X = –1) + P(X = 0) + P(X = 1) + P(X = 2)

= 0.2 + 0.15 + 0.1 + 0.1

= 0.55

ii. P(X ≤ 3 / X > 0)

= `("P"("X" = 1  "or"  "X" = 2  "or"  "X" + 3))/("P"("X" = 1  "or"  "X" = 2  "or"  "X" = 3  "or"  "X" = 4)`    ......`[("Using conditional probability"),("P"("A"/"B") = ("P"("A" ∩ "B"))/("P"("B")))]`

= `("P"("X" = 1) + "P"("X" = 2) + "P"("X" = 3))/("P"("X" = 1) + "P"("X" = 2) + "P"("X" = 3) + "P"("X" = 4))`

= `(0.1 + 0.1 + 0.05)/(0.1 + 0.1 + 0.05 + 0.1)`

= `0.25/0.35`

= `5/7`

shaalaa.com
Probability Distribution of Discrete Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Probability Distributions - Miscellaneous Exercise 2 [पृष्ठ २४४]

संबंधित प्रश्न

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.4 0.4 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2 3 4
P(X) 0.1 0.5 0.2 − 0.1 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

Y −1 0 1
P(Y) 0.6 0.1 0.2

Find the mean number of heads in three tosses of a fair coin.


Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the standard deviation of X.


The following is the p.d.f. of r.v. X:

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find P (x < 1·5)


The following is the p.d.f. of r.v. X :

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise

P ( 1 < x < 2 )


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Find probability that X is negative


If a r.v. X has p.d.f., 

f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).


Choose the correct option from the given alternative :

If p.m.f. of a d.r.v. X is P (x) = `c/ x^3` , for x = 1, 2, 3 and = 0, otherwise (elsewhere) then E (X ) =


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution :

x -2 -1 0 1 2 3
p(X=x) 0.1 k 0.2 2k 0.3 k

then P (X = −1) =


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution :

x -2 -1 0 1 2 3
p(X=x) 0.1 k 0.2 2k 0.3 k

then P (X = −1) =


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

The person on the high protein diet is interested gain of weight in a week.


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is positive


Solve the following problem :

A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

*1

P (–1 ≤ X ≤ 2)


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)


Find the probability distribution of number of number of tails in three tosses of a coin


Find the probability distribution of number of heads in four tosses of a coin


70% of the members favour and 30% oppose a proposal in a meeting. The random variable X takes the value 0 if a member opposes the proposal and the value 1 if a member is in favour. Find E(X) and Var(X).


Find k if the following function represents the p. d. f. of a r. v. X.

f(x) = `{(kx,  "for"  0 < x < 2),(0,  "otherwise."):}`

Also find `"P"[1/4 < "X" < 1/2]`


F(x) is c.d.f. of discrete r.v. X whose distribution is

Xi – 2 – 1 0 1 2
Pi 0.2 0.3 0.15 0.25 0.1

Then F(–  3) = _______ .


The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.


X is r.v. with p.d.f. f(x) = `"k"/sqrt(x)`, 0 < x < 4 = 0 otherwise then x E(X) = _______


Fill in the blank :

E(x) is considered to be _______ of the probability distribution of x.


State whether the following is True or False :

If p.m.f. of discrete r.v. X is

x 0 1 2
P(X = x) q2 2pq p2 

then E(x) = 2p.


If r.v. X assumes values 1, 2, 3, ……. n with equal probabilities then E(X) = `("n" + 1)/(2)`


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Determine the value of k.


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Find P(X ≤ 4), P(2 < X < 4), P(X ≤ 3).


If X denotes the number on the uppermost face of cubic die when it is tossed, then E(X) is ______


If a d.r.v. X takes values 0, 1, 2, 3, … with probability P(X = x) = k(x + 1) × 5–x, where k is a constant, then P(X = 0) = ______


The p.m.f. of a d.r.v. X is P(X = x) = `{{:(((5),(x))/2^5",", "for"  x = 0","  1","  2","  3","  4","  5),(0",", "otherwise"):}` If a = P(X ≤ 2) and b = P(X ≥ 3), then


If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for"  x = 1","  2","  3","  .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______


If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(("c")/x^3",", "for"  x = 1","  2","  3","),(0",", "otherwise"):}` then E(X) = ______


If a d.r.v. X has the following probability distribution:

X –2 –1 0 1 2 3
P(X = x) 0.1 k 0.2 2k 0.3 k

then P(X = –1) is ______


Find mean for the following probability distribution.

X 0 1 2 3
P(X = x) `1/6` `1/3` `1/3` `1/6`

Find the expected value and variance of r.v. X whose p.m.f. is given below.

X 1 2 3
P(X = x) `1/5` `2/5` `2/5`

The probability distribution of X is as follows:

X 0 1 2 3 4
P(X = x) 0.1 k 2k 2k k

Find k and P[X < 2]


The probability distribution of a discrete r.v.X is as follows.

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k

Complete the following activity.

Solution: Since `sum"p"_"i"` = 1

P(X ≥ 3) = `square - square - square  = square`


Using the following activity, find the expected value and variance of the r.v.X if its probability distribution is as follows.

x 1 2 3
P(X = x) `1/5` `2/5` `2/5`

Solution: µ = E(X) = `sum_("i" = 1)^3 x_"i""p"_"i"`

E(X) = `square + square + square = square`

Var(X) = `"E"("X"^2) - {"E"("X")}^2`

= `sum"X"_"i"^2"P"_"i" - [sum"X"_"i""P"_"i"]^2`

= `square - square`

= `square`


The following function represents the p.d.f of a.r.v. X

f(x) = `{{:((kx;, "for"  0 < x < 2, "then the value of K is ")),((0;,  "otherwise")):}` ______ 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×