Advertisements
Advertisements
प्रश्न
The probability distribution of a discrete r.v.X is as follows.
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Complete the following activity.
Solution: Since `sum"p"_"i"` = 1
P(X ≤ 4) = `square + square + square + square = square`
उत्तर
Since `sum"p"_"i"` = 1
k + 2k + 3k + 5k + 6k = 1
∴ 21k = 1
∴ k = `1/21`
P(X ≤ 4) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)
= k + 2k + 3k + 4k
= `1/21 + 2/21 + 3/21 + 4/21`
= `10/21`
APPEARS IN
संबंधित प्रश्न
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.5 | 0.2 | − 0.1 | 0.2 |
Find the mean number of heads in three tosses of a fair coin.
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise
Find probability that X is negative
Choose the correct option from the given alternative:
If a d.r.v. X takes values 0, 1, 2, 3, . . . which probability P (X = x) = k (x + 1)·5 −x , where k is a constant, then P (X = 0) =
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution :
x | -2 | -1 | 0 | 1 | 2 | 3 |
p(X=x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P (X = −1) =
The probability distribution of discrete r.v. X is as follows :
x = x | 1 | 2 | 3 | 4 | 5 | 6 |
P[x=x] | k | 2k | 3k | 4k | 5k | 6k |
(i) Determine the value of k.
(ii) Find P(X≤4), P(2<X< 4), P(X≥3).
70% of the members favour and 30% oppose a proposal in a meeting. The random variable X takes the value 0 if a member opposes the proposal and the value 1 if a member is in favour. Find E(X) and Var(X).
Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)
State whether the following is True or False :
If P(X = x) = `"k"[(4),(x)]` for x = 0, 1, 2, 3, 4 , then F(5) = `(1)/(4)` when F(x) is c.d.f.
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Determine the value of k.
Solve the following problem :
The following is the c.d.f of a r.v.X.
x | – 3 | – 2 | – 1 | 0 | 1 | 2 | 3 | 4 |
F (x) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 | 1 |
Find the probability distribution of X and P(–1 ≤ X ≤ 2).
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | 1 | 2 | 3 |
P(X = x) | `(1)/(5)` | `(2)/(5)` | `(2)/(5)` |
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
X | 0 | 1 | 2 | 3 | 4 | 5 |
P(X = x) | `(1)/(32)` | `(5)/(32)` | `(10)/(32)` | `(10)/(32)` | `(5)/(32)` | `(1)/(32)` |
If a d.r.v. X has the following probability distribution:
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X = x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
then k = ______
Find mean for the following probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | `1/6` | `1/3` | `1/3` | `1/6` |
The values of discrete r.v. are generally obtained by ______
The probability distribution of a discrete r.v.X is as follows.
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Complete the following activity.
Solution: Since `sum"p"_"i"` = 1
P(X ≥ 3) = `square - square - square = square`
If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)`; for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.