Advertisements
Advertisements
प्रश्न
Find the mode from the following information:
L = 10, h = 2, f0 = 58, f1 = 70, f2 = 42.
उत्तर
Mode = `"l" + ("f"_1 - "f"_0)/(2"f"_1 - "f"_0 - "f"_2) xx "h"`
`= 10 + (70 - 58)/(2 (70) - 58 - 42) xx 2`
`= 10 + 12/(140 - 100) xx 2`
`= 10 + 24/40`
`= 10 + 3/5`
`= 53/5`
= 10.6
APPEARS IN
संबंधित प्रश्न
Find the mode of the following data:
3, 3, 7, 4, 5, 3, 5, 6, 8, 9, 5, 3, 5, 3, 6, 9, 7, 4
Find the mode of the following distribution.
Class-interval: | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 |
Frequency: | 30 | 45 | 75 | 35 | 25 | 15 |
The marks in science of 80 students of class X are given below: Find the mode of the marks obtained by the students in science.
Marks: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 | 80 - 90 | 90 - 100 |
Frequency: | 3 | 5 | 16 | 12 | 13 | 20 | 5 | 4 | 1 | 1 |
The following is the distribution of height of students of a certain class in a certain city:
Height (in cm): | 160 - 162 | 163 - 165 | 166 - 168 | 169 - 171 | 172 - 174 |
No. of students: | 15 | 118 | 142 | 127 | 18 |
Find the average height of maximum number of students.
The following table gives the daily income of 50 workers of a factory:
Daily income (in Rs) | 100 - 120 | 120 - 140 | 140 - 160 | 160 - 180 | 180 - 200 |
Number of workers: | 12 | 14 | 8 | 6 | 10 |
Find the mean, mode and median of the above data.
Compute the mode of the following data:
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 |
Frequency | 25 | 16 | 28 | 20 | 5 |
Given below is the distribution of total household expenditure of 200 manual workers in a city:
Expenditure (in Rs) | 1000 – 1500 | 1500 – 2000 | 2000 – 2500 | 2500 – 3000 | 3000 – 3500 | 3500 – 4000 | 4000 – 4500 | 4500 – 5000 |
Number of manual workers |
24 | 40 | 31 | 28 | 32 | 23 | 17 | 5 |
Find the average expenditure done by maximum number of manual workers.
The agewise participation of students in the annual function of a school is shown in the following distribution.
Age (in years) | 5 - 7 | 7 - 9 | 9 - 11 | 11 – 13 | 13 – 15 | 15 – 17 | 17 – 19 |
Number of students | x | 15 | 18 | 30 | 50 | 48 | x |
Find the missing frequencies when the sum of frequencies is 181. Also find the mode of the data.
Find out the mode from the following data:
Wages (in ₹) | No. of persons |
125 | 3 |
175 | 8 |
225 | 21 |
275 | 6 |
325 | 4 |
375 | 2 |
For the data 11, 15, 17, x + 1, 19, x – 2, 3 if the mean is 14, find the value of x. Also find the mode of the data
Find the mode of the following data:
Marks | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 |
Number of students | 22 | 38 | 46 | 34 | 20 |
For the following distribution
Marks | No. of students |
Less than 20 | 4 |
Less than 40 | 12 |
Less than 60 | 25 |
Less than 80 | 56 |
Less than 100 | 74 |
Less than 120 | 80 |
the modal class is?
In the formula `x-a+(sumf_i d_i)/(sumf_i),` for finding the mean of grouped data d1's are deviations from the ______.
Construction of a cumulative frequency table is useful in determining the ______.
For the following distribution:
Class | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 |
Frequency | 10 | 15 | 12 | 20 | 9 |
The sum of lower limits of the median class and modal class is:
The monthly income of 100 families are given as below:
Income (in Rs) | Number of families |
0 – 5000 | 8 |
5000 – 10000 | 26 |
10000 – 15000 | 41 |
15000 – 20000 | 16 |
20000 – 25000 | 3 |
25000 – 30000 | 3 |
30000 – 35000 | 2 |
35000 – 40000 | 1 |
Calculate the modal income.
For the following distribution:
Class | 0 - 5 | 5 - 10 | 10 - 15 | 15 - 20 | 20 - 25 |
Frequency | 10 | 15 | 12 | 20 | 9 |
the upper limit of the modal class is:
The mode of a grouped frequency distribution is 75 and the modal class is 65-80. The frequency of the class preceding the modal class is 6 and the frequency of the class succeeding the modal class is 8. Find the frequency of the modal class.
For the following frequency distribution, find the mode:
Class | 25 – 30 | 30 – 35 | 35 – 40 | 40 – 45 | 45 – 50 |
Frequency | 12 | 5 | 14 | 8 | 9 |