Advertisements
Advertisements
Question
Find the mode from the following information:
L = 10, h = 2, f0 = 58, f1 = 70, f2 = 42.
Solution
Mode = `"l" + ("f"_1 - "f"_0)/(2"f"_1 - "f"_0 - "f"_2) xx "h"`
`= 10 + (70 - 58)/(2 (70) - 58 - 42) xx 2`
`= 10 + 12/(140 - 100) xx 2`
`= 10 + 24/40`
`= 10 + 3/5`
`= 53/5`
= 10.6
APPEARS IN
RELATED QUESTIONS
A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data.
Number of cars | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 | 50 − 60 | 60 − 70 | 70 − 80 |
Frequency | 7 | 14 | 13 | 12 | 20 | 11 | 15 | 8 |
Find the mode of the following data:
3, 5, 7, 4, 5, 3, 5, 6, 8, 9, 5, 3, 5, 3, 6, 9, 7, 4
Find the mode of the following data:
15, 8, 26, 25, 24, 15, 18, 20, 24, 15, 19, 15
Find the mode of the following distribution.
Class-interval: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 |
Frequency: | 5 | 8 | 7 | 12 | 28 | 20 | 10 | 10 |
Compare the modal ages of two groups of students appearing for an entrance test:
Age (in years): | 16-18 | 18-20 | 20-22 | 22-24 | 24-26 |
Group A: | 50 | 78 | 46 | 28 | 23 |
Group B: | 54 | 89 | 40 | 25 | 17 |
The following is the distribution of height of students of a certain class in a certain city:
Height (in cm): | 160 - 162 | 163 - 165 | 166 - 168 | 169 - 171 | 172 - 174 |
No. of students: | 15 | 118 | 142 | 127 | 18 |
Find the average height of maximum number of students.
Find the mean, median and mode of the following data:
Classes: | 0 – 50 | 50 – 100 | 100 – 150 | 150 – 200 | 200 – 250 | 250 – 300 | 300 – 350 |
Frequency: | 2 | 3 | 5 | 6 | 5 | 3 | 1 |
The following table gives the daily income of 50 workers of a factory:
Daily income (in Rs) | 100 - 120 | 120 - 140 | 140 - 160 | 160 - 180 | 180 - 200 |
Number of workers: | 12 | 14 | 8 | 6 | 10 |
Find the mean, mode and median of the above data.
Calculate the mode from the following data:
Monthly salary (in Rs) | No of employees |
0 – 5000 | 90 |
5000 – 10000 | 150 |
10000 – 15000 | 100 |
15000 – 20000 | 80 |
20000 – 25000 | 70 |
25000 – 30000 | 10 |
Find the mode of the given data:
Class Interval | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 |
Frequency | 15 | 6 | 18 | 10 |
If the mode of the data: 16, 15, 17, 16, 15, x, 19, 17, 14 is 15, then x =
State the modal class.
Class Interval | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 - 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |
A study of the yield of 150 tomato plants, resulted in the record:
Tomatoes per Plant | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 | 21 - 25 |
Number of Plants | 20 | 50 | 46 | 22 | 12 |
What is the frequency of the class preceding the modal class?
The following table give the marks scored by students in an examination:
Marks | 0 - 5 | 5 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 |
No. of students | 3 | 7 | 15 | 24 | 16 | 8 | 5 | 2 |
(i) Find the modal group
(ii) Which group has the least frequency?
Find the mode of the given data: 3.1, 3.2, 3.3, 2.1, 1.3, 3.3, 3.1
Construction of a cumulative frequency table is useful in determining the ______.
If mode of the following frequency distribution is 55, then find the value of x.
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
Frequency | 10 | 7 | x | 15 | 10 | 12 |
The frequency distribution of daily working expenditure of families in a locality is as follows:
Expenditure in ₹ (x): |
0 – 50 | 50 – 100 | 100 – 150 | 150 – 200 | 200 – 250 |
No. of families (f): |
24 | 33 | 37 | b | 25 |
If the mode of the distribution is ₹ 140 then the value of b is ______.
The following frequency distribution table shows the classification of the number of vehicles and the volume of petrol filled in them. To find the mode of the volume of petrol filled, complete the following activity:
Class (Petrol filled in Liters) |
Frequency (Number of Vehicles) |
0.5 - 3.5 | 33 |
3.5 - 6.5 | 40 |
6.5 - 9.5 | 27 |
9.5 - 12.5 | 18 |
12.5 - 15.5 | 12 |
Activity:
From the given table,
Modal class = `square`
∴ Mode = `square + [(f_1 - f_0)/(2f_1 -f_0 - square)] xx h`
∴ Mode = `3.5 + [(40 - 33)/(2(40) - 33 - 27)] xx square`
∴ Mode = `3.5 +[7/(80 - 60)] xx 3`
∴ Mode = `square`
∴ The mode of the volume of petrol filled is `square`.