Advertisements
Advertisements
प्रश्न
Find the mode from the following information:
L = 10, h = 2, f0 = 58, f1 = 70, f2 = 42.
उत्तर
Mode = `"l" + ("f"_1 - "f"_0)/(2"f"_1 - "f"_0 - "f"_2) xx "h"`
`= 10 + (70 - 58)/(2 (70) - 58 - 42) xx 2`
`= 10 + 12/(140 - 100) xx 2`
`= 10 + 24/40`
`= 10 + 3/5`
`= 53/5`
= 10.6
APPEARS IN
संबंधित प्रश्न
The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures.
Number of students per teacher |
Number of states/U.T. |
15 − 20 | 3 |
20 − 25 | 8 |
25 − 30 | 9 |
30 − 35 | 10 |
35 − 40 | 3 |
40 − 45 | 0 |
45 − 50 | 0 |
50 − 55 | 2 |
The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them.
Monthly consumption (in units) | Number of consumers |
65 - 85 | 4 |
85 - 105 | 5 |
105 - 125 | 13 |
125 - 145 | 20 |
145 - 165 | 14 |
165 - 185 | 8 |
185 - 205 | 4 |
The following table gives the daily income of 50 workers of a factory:
Daily income (in Rs) | 100 - 120 | 120 - 140 | 140 - 160 | 160 - 180 | 180 - 200 |
Number of workers: | 12 | 14 | 8 | 6 | 10 |
Find the mean, mode and median of the above data.
The agewise participation of students in the annual function of a school is shown in the following distribution.
Age (in years) | 5 - 7 | 7 - 9 | 9 - 11 | 11 – 13 | 13 – 15 | 15 – 17 | 17 – 19 |
Number of students | x | 15 | 18 | 30 | 50 | 48 | x |
Find the missing frequencies when the sum of frequencies is 181. Also find the mode of the data.
The frequency distribution for agriculture holdings in a village is given below:
Area of land (in hectares) | 1 – 3 | 3 – 5 | 5 – 7 | 7 – 9 | 9 – 11 | 11 – 13 |
Number of families | 20 | 45 | 80 | 55 | 40 | 12 |
Find the modal agriculture holding per family.
The relationship between mean, median and mode for a moderately skewed distribution is.
The following frequency table shows the demand for a sweet and the number of customers. Find the mode of demand of sweet.
Weight of sweet (gram)
|
0 - 250 | 250 - 500 | 500 - 750 | 750 - 1000 | 1000 - 1250 |
No. of customers | 10 | 60 | 25 | 20 | 15 |
Find out the mode from the following data:
Wages (in ₹) | No. of persons |
125 | 3 |
175 | 8 |
225 | 21 |
275 | 6 |
325 | 4 |
375 | 2 |
State the modal class.
Class Interval | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 - 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |
A study of the yield of 150 tomato plants, resulted in the record:
Tomatoes per Plant | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 | 21 - 25 |
Number of Plants | 20 | 50 | 46 | 22 | 12 |
What is the frequency of the class preceding the modal class?
Find the mode of the given data: 3.1, 3.2, 3.3, 2.1, 1.3, 3.3, 3.1
Construction of a cumulative frequency table is useful in determining the ______.
For the following distribution
C.l. | 0 - 5 | 5 - 10 | 10 - 15 | 15 - 20 | 20 - 25 |
f | 10 | 15 | 12 | 20 | 9 |
the difference of the upper limit of the median class and the lower limit of the modal class is?
Mode is the value of the variable which has ______.
Mrs. Garg recorded the marks obtained by her students in the following table. She calculated the modal marks of the students of the class as 45. While printing the data, a blank was left. Find the missing frequency in the table given below.
Marks Obtained |
0 − 20 | 20 − 40 | 40 − 60 | 60 − 80 | 80 − 100 |
Number of Students |
5 | 10 | − | 6 | 3 |
If L = 10, f1 = 70, f0 = 58, f2 = 42, h = 2, then find the mode by using formula.
The frequency distribution of daily working expenditure of families in a locality is as follows:
Expenditure in ₹ (x): |
0 – 50 | 50 – 100 | 100 – 150 | 150 – 200 | 200 – 250 |
No. of families (f): |
24 | 33 | 37 | b | 25 |
If the mode of the distribution is ₹ 140 then the value of b is ______.
The mode of the numbers 2, 3, 3, 4, 5, 4, 4, 5, 3, 4, 2, 6, 7 is ______.
The following frequency distribution table shows the classification of the number of vehicles and the volume of petrol filled in them. To find the mode of the volume of petrol filled, complete the following activity:
Class (Petrol filled in Liters) |
Frequency (Number of Vehicles) |
0.5 - 3.5 | 33 |
3.5 - 6.5 | 40 |
6.5 - 9.5 | 27 |
9.5 - 12.5 | 18 |
12.5 - 15.5 | 12 |
Activity:
From the given table,
Modal class = `square`
∴ Mode = `square + [(f_1 - f_0)/(2f_1 -f_0 - square)] xx h`
∴ Mode = `3.5 + [(40 - 33)/(2(40) - 33 - 27)] xx square`
∴ Mode = `3.5 +[7/(80 - 60)] xx 3`
∴ Mode = `square`
∴ The mode of the volume of petrol filled is `square`.