Advertisements
Advertisements
प्रश्न
The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures.
Number of students per teacher |
Number of states/U.T. |
15 − 20 | 3 |
20 − 25 | 8 |
25 − 30 | 9 |
30 − 35 | 10 |
35 − 40 | 3 |
40 − 45 | 0 |
45 − 50 | 0 |
50 − 55 | 2 |
उत्तर
It can be observed from the given data that the maximum class frequency is 10 belonging to class interval 30 − 35.
Therefore, modal class = 30 − 35
Class size (h) = 5
lower limit (l) of modal class is = 30
Frequency (f1) of modal class = 10
Frequency (f0) of the preceding modal class = 9
Frequency (f2) of the succeeding modal class = 3
`Mode = l+((f_1-f_0)/(2f_1-f_0-f_2) xxh)`
= `30+((10-9)/2(10)-9-3)xx(5)`
=`30+(1/(20-12))xx 5`
=` 30 + 5/8`
= 30.625
Mode = 30.6
It represents that most of the states and U.T. have a teacher-student ratio as 30.6.
To find the class marks, the following relation is used:
`"Class mark" = ("Upper class limit + Lower class limit")/2`
Taking 32.5 as the assumed mean (a), di, ui, and fiui are calculated as follows:
Number of students per teacher |
Number of states/U.T. (fi) |
xi | di = xi − 32. | `u_i=d_i/5` | fiui |
15 − 20 | 3 | 17.5 | −15 | −3 | −9 |
20 − 25 | 8 | 22.5 | -10 | −2 | −16 |
25 − 30 | 9 | 27.5 | − 5 | −1 | −9 |
30 − 35 | 10 | 32.5 | 0 | 0 | 0 |
35 − 40 | 3 | 37.5 | 5 | 1 | 3 |
40 − 45 | 0 | 42.5 | 10 | 2 | 0 |
45 − 50 | 0 | 47.5 | 15 | 3 | 0 |
50 − 55 | 2 | 52.5 | 20 | 4 | 8 |
Total | 35 | -23 |
Mean, `barx = a+((sumf_iu_i)/(sumf_i))xxh`
= `32.5 +((-23)/35)xx5`
= `32.5 - 23/7 `
= 32.5 - 3.28
= 29.22
Therefore, the mean of the data is 29.2.
It represents that, on average, the teacher-student ratio was 29.2
संबंधित प्रश्न
The following data gives the information on the observed lifetimes (in hours) of 225 electrical components:
Lifetimes (in hours) | 0 − 20 | 20 − 40 | 40 − 60 | 60 − 80 | 80 − 100 | 100− 120 |
Frequency | 10 | 35 | 52 | 61 | 38 | 29 |
Determine the modal lifetimes of the components.
The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure.
Expenditure (in Rs) | Number of families |
1000 − 1500 | 24 |
1500 − 2000 | 40 |
2000 − 2500 | 33 |
2500 − 3000 | 28 |
3000 − 3500 | 30 |
3500 − 4000 | 22 |
4000 − 4500 | 16 |
4500 − 5000 | 7 |
Find the mode of the following data:
3, 5, 7, 4, 5, 3, 5, 6, 8, 9, 5, 3, 5, 3, 6, 9, 7, 4
Find the mode of the following distribution.
Class-interval: | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 |
Frequency: | 30 | 45 | 75 | 35 | 25 | 15 |
Find the mode of the following distribution.
Class-interval: | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 |
Frequency: | 25 | 34 | 50 | 42 | 38 | 14 |
Find the mode of the following distribution:
Class interval |
10 – 14 | 14 – 18 | 18 – 22 | 22 – 26 | 26 – 30 | 30 – 34 | 34 – 38 | 38 – 42 |
Frequency | 8 | 6 | 11 | 20 | 25 | 22 | 10 | 4 |
Given below is the distribution of total household expenditure of 200 manual workers in a city:
Expenditure (in Rs) | 1000 – 1500 | 1500 – 2000 | 2000 – 2500 | 2500 – 3000 | 3000 – 3500 | 3500 – 4000 | 4000 – 4500 | 4500 – 5000 |
Number of manual workers |
24 | 40 | 31 | 28 | 32 | 23 | 17 | 5 |
Find the average expenditure done by maximum number of manual workers.
Compute the mode from the following data:
Age (in years) | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 - 35 |
No of patients | 6 | 11 | 18 | 24 | 17 | 13 | 5 |
Compute the mode from the following data:
Class interval | 1 – 5 | 6 – 10 | 11 – 15 | 16 – 20 | 21 – 25 | 26 – 30 | 31 – 35 | 36 – 40 | 41 – 45 | 46 – 50 |
Frequency | 3 | 8 | 13 | 18 | 28 | 20 | 13 | 8 | 6 | 4 |
The relationship between mean, median and mode for a moderately skewed distribution is.
Find the mode of the following frequency distribution:
x | 10 | 11 | 12 | 13 | 14 | 15 |
f | 1 | 4 | 7 | 5 | 9 | 3 |
State the modal class.
Class Interval | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 - 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |
Find the mode of the given data: 3.1, 3.2, 3.3, 2.1, 1.3, 3.3, 3.1
If xi's are the midpoints of the class intervals of grouped data, fi's are the corresponding frequencies and `barx` is the mean, then `sum(f_ix_i-barx)` is equal to ______.
For the following distribution:
Class | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 |
Frequency | 10 | 15 | 12 | 20 | 9 |
The sum of lower limits of the median class and modal class is:
For the following distribution:
Marks | Number of students |
Below 10 | 3 |
Below 20 | 12 |
Below 30 | 27 |
Below 40 | 57 |
Below 50 | 75 |
Below 60 | 80 |
The modal class is ______.
Mrs. Garg recorded the marks obtained by her students in the following table. She calculated the modal marks of the students of the class as 45. While printing the data, a blank was left. Find the missing frequency in the table given below.
Marks Obtained |
0 − 20 | 20 − 40 | 40 − 60 | 60 − 80 | 80 − 100 |
Number of Students |
5 | 10 | − | 6 | 3 |
For the following distribution:
Class | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 |
Frequency | 10 | 15 | 12 | 20 | 9 |
The lower limit of modal class is:
The upper limit of the modal class of the given distribution is:
Height [in cm] | Below 140 | Below 145 | Below 150 | Below 155 | Below 160 | Below 165 |
Number of girls | 4 | 11 | 29 | 40 | 46 | 51 |