Advertisements
Advertisements
प्रश्न
The following data gives the information on the observed lifetimes (in hours) of 225 electrical components:
Lifetimes (in hours) | 0 − 20 | 20 − 40 | 40 − 60 | 60 − 80 | 80 − 100 | 100− 120 |
Frequency | 10 | 35 | 52 | 61 | 38 | 29 |
Determine the modal lifetimes of the components.
उत्तर
From the data given above, it can be observed that the maximum class frequency is 61, belonging to the class interval 60 − 80.
Therefore, modal class = 60 − 80
Lower class limit (l) of modal class = 60
Frequency (f1) of modal class = 61
Frequency (f0) of class preceding the modal class = 52
Frequency (f2) of class succeeding the modal class = 38
Class size (h) = 20
`"Mode" = l+((f_1-f_0)/(2f_1-f_0-f_2))xxh`
= `60+((61-52)/(2(61)-52-38))xx20`
= `60+(9/(122-90))(20)`
= `60+90/16`
= 60 + 5.625
= 65.625
Therefore, the modal lifetime of electrical components is 65.625 hours.
संबंधित प्रश्न
The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.
Runs scored | Number of batsmen |
3000 − 4000 | 4 |
4000 − 5000 | 18 |
5000 − 6000 | 9 |
6000 − 7000 | 7 |
7000 − 8000 | 6 |
8000 − 9000 | 3 |
9000 − 10000 | 1 |
10000 − 11000 | 1 |
Find the mode of the data.
A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data.
Number of cars | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 | 50 − 60 | 60 − 70 | 70 − 80 |
Frequency | 7 | 14 | 13 | 12 | 20 | 11 | 15 | 8 |
Find the mode of the following data:
3, 5, 7, 4, 5, 3, 5, 6, 8, 9, 5, 3, 5, 3, 6, 9, 7, 4
Find the mode of the following data:
3, 3, 7, 4, 5, 3, 5, 6, 8, 9, 5, 3, 5, 3, 6, 9, 7, 4
Compare the modal ages of two groups of students appearing for an entrance test:
Age (in years): | 16-18 | 18-20 | 20-22 | 22-24 | 24-26 |
Group A: | 50 | 78 | 46 | 28 | 23 |
Group B: | 54 | 89 | 40 | 25 | 17 |
Calculate the mode from the following data:
Monthly salary (in Rs) | No of employees |
0 – 5000 | 90 |
5000 – 10000 | 150 |
10000 – 15000 | 100 |
15000 – 20000 | 80 |
20000 – 25000 | 70 |
25000 – 30000 | 10 |
Compute the mode from the following data:
Age (in years) | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 - 35 |
No of patients | 6 | 11 | 18 | 24 | 17 | 13 | 5 |
Compute the mode from the following series:
Size | 45 – 55 | 55 – 65 | 65 – 75 | 75 – 85 | 85 – 95 | 95 – 105 | 105 - 115 |
Frequency | 7 | 12 | 17 | 30 | 32 | 6 | 10 |
A study of the yield of 150 tomato plants, resulted in the record:
Tomatoes per Plant | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 | 21 - 25 |
Number of Plants | 20 | 50 | 46 | 22 | 12 |
What is the frequency of the class preceding the modal class?
The monthly salary of 10 employees in a factory are given below:
₹ 5000, ₹ 7000, ₹ 5000, ₹ 7000, ₹ 8000, ₹ 7000, ₹ 7000, ₹ 8000, ₹ 7000, ₹ 5000
Find the mean, median and mode
For the data 11, 15, 17, x + 1, 19, x – 2, 3 if the mean is 14, find the value of x. Also find the mode of the data
Find the mode of the following data:
Marks | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 |
Number of students | 22 | 38 | 46 | 34 | 20 |
Construction of a cumulative frequency table is useful in determining the ______.
For the following distribution
C.l. | 0 - 5 | 5 - 10 | 10 - 15 | 15 - 20 | 20 - 25 |
f | 10 | 15 | 12 | 20 | 9 |
the difference of the upper limit of the median class and the lower limit of the modal class is?
The mode of the following data is:
xi | 10 | 14 | 18 | 21 | 25 |
fi | 10 | 15 | 7 | 9 | 9 |
There are lottery tickets labelled numbers from 1 to 500. I want to find the number which is most common in the lottery tickets. What quantity do I need to use?
For ‘more than ogive’ the x-axis represents ______.
Mrs. Garg recorded the marks obtained by her students in the following table. She calculated the modal marks of the students of the class as 45. While printing the data, a blank was left. Find the missing frequency in the table given below.
Marks Obtained |
0 − 20 | 20 − 40 | 40 − 60 | 60 − 80 | 80 − 100 |
Number of Students |
5 | 10 | − | 6 | 3 |
For the following distribution:
Class | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 |
Frequency | 10 | 15 | 12 | 20 | 9 |
The lower limit of modal class is: