Advertisements
Advertisements
प्रश्न
Find the quotient and the remainder when :
3x4 + 6x3 − 6x2 + 2x − 7 is divided by x − 3. verify your answer.
उत्तर
`-"x"-3)overline(3"x"^4+6"x"^3-6"x"^2+2"x"-7)(3"x"^3+15"x"^2+39"x"+119`
3x4 − 9x3
− +
15x3 − 6x2 + 2x − 7
15x3 − 45x2
− +
39x2 + 2x − 7
39x2 − 117x
− +
119x − 7
119x − 357
− +
350
∴ Quotient = 3x3 + 15x2 + 39x + 119 and reminder = 350
Verification:
Dividend = Quotient × Divisor + Reminder
= (3x3 + 15x2 + 39x + 119) (x − 3) + 350
= 3x4 + 15x3 + 39x2 + 119x − 9x3 − 45x2 − 117x − 357 + 350
= 3x4 + 6x3 − 6x2 + 2x − 7 which is given
APPEARS IN
संबंधित प्रश्न
Work out the following division:
(10x − 25) ÷ (2x − 5)
Work out the following division:
10y(6y + 21) ÷ 5(2y + 7)
Divide as directed.
5(2x + 1) (3x + 5) ÷ (2x + 1)
Divide as directed.
52pqr (p + q) (q + r) (r + p) ÷ 104pq (q + r) (r + p)
Factorise the expression and divide them as directed.
(m2 − 14m − 32) ÷ (m + 2)
Factorise the expression and divide them as directed.
39y3(50y2 − 98) ÷ 26y2(5y + 7)
Find the greatest common factor (GCF/HCF) of the following polynomial:
a2b3, a3b2
Divide: 12x2 + 7xy − 12y2 by 3x + 4y
Divide: x6 − 8 by x2 − 2
Divide: 4a2 + 12ab + 9b2 − 25c2 by 2a + 3b + 5c