Advertisements
Advertisements
प्रश्न
Find the sum of all odd natural numbers less than 50.
उत्तर
Odd natural numbers less than 50 are as follows:
1, 3, 5, 7, 9, ........, 49
Now, 3 – 1 = 2, 5 – 3 = 2 and so on.
Thus, this forms an A.P. with first term a = 1,
Common difference d = 2 and last term l = 49
Now, l = a + (n – 1)d
`=>` 49 = 1 + (n – 1) × 2
`=>` 48 = (n – 1) × 2
`=>` 24 = n – 1
`=>` n = 25
Sum of first n terms = `S = n/2 [a + 1]`
`=>` Sum of odd natural numbers less than 50
= `25/2 [1 + 49]`
= `25/2 xx 50`
= 25 × 25
= 625
APPEARS IN
संबंधित प्रश्न
The first and the last terms of an AP are 7 and 49 respectively. If sum of all its terms is 420, find its common difference.
A contract on a construction job specifies a penalty for delay of completion beyond a certain date as follows: Rs. 200 for the first day, Rs. 250 for the second day, Rs. 300 for the third day, etc., the penalty for each succeeding day being Rs. 50 more than for the preceding day. How much money does the contractor have to pay as a penalty if he has delayed the work by 30 days.
Find the sum of all integers between 84 and 719, which are multiples of 5.
Find the sum of all multiples of 7 lying between 300 and 700.
The sum of the first n terms of an AP is given by `s_n = ( 3n^2 - n) ` Find its
(i) nth term,
(ii) first term and
(iii) common difference.
Two A.P.’ s are given 9, 7, 5, . . . and 24, 21, 18, . . . . If nth term of both the progressions are equal then find the value of n and nth term.
If the sum of first n terms of an A.P. is \[\frac{1}{2}\] (3n2 + 7n), then find its nth term. Hence write its 20th term.
If Sn denotes the sum of the first n terms of an A.P., prove that S30 = 3(S20 − S10)
Q.2
The sum of first ten natural number is ______.