Advertisements
Advertisements
प्रश्न
Find the sum of 28 terms of an A.P. whose nth term is 8n – 5.
उत्तर
nth term of an A.P. = tn = 8n – 5
Let a be the first term and d be the common difference of this A.P.
Then,
a = t1
= 8 × 1 – 5
= 8 – 5
= 3
t2 = 8 × 2 – 5
= 16 – 5
= 11
∴ d = t2 – t1
= 11 – 3
= 8
The sum of n terms of an A.P. = `S = n/2 [2a + (n - 1)d]`
`=>` Sum of 28 terms of an A.P. = `28/2 [2 xx 3 + 27 xx 8]`
= 14[6 + 216]
= 14 × 222
= 3108
APPEARS IN
संबंधित प्रश्न
If the ratio of the sum of the first n terms of two A.Ps is (7n + 1) : (4n + 27), then find the ratio of their 9th terms.
Write the next term of the AP `sqrt(2) , sqrt(8) , sqrt(18),.........`
Find four consecutive terms in an A.P. whose sum is 12 and sum of 3rd and 4th term is 14.
(Assume the four consecutive terms in A.P. are a – d, a, a + d, a +2d)
The first and the last terms of an A.P. are 8 and 350 respectively. If its common difference is 9, how many terms are there and what is their sum?
Find the sum of all 2 - digit natural numbers divisible by 4.
The common difference of an A.P., the sum of whose n terms is Sn, is
The common difference of the A.P. is \[\frac{1}{2q}, \frac{1 - 2q}{2q}, \frac{1 - 4q}{2q}, . . .\] is
Q.19
Find the sum of three-digit natural numbers, which are divisible by 4
In a ‘Mahila Bachat Gat’, Sharvari invested ₹ 2 on first day, ₹ 4 on second day and ₹ 6 on third day. If she saves like this, then what would be her total savings in the month of February 2010?