Advertisements
Advertisements
प्रश्न
Find the sum of the following series
103 + 113 + 123 + ... + 203
उत्तर
103 + 113 + 123 + ... + 203
= (13 + 23+ 33 + ... + 203) – (13 + 23 + 33 + ... + 93)
= `sum_1^20 "n"^3 - sum_1^9 "n"^3`
= `(("n"("n" + 1))/2)_("n" = 20)^2 - (("n"("n" + 1))/2)_("n" = 9)^2`
= `((20 xx 21)/2)^2 - ((9 xx 10)/2)^2`
= 2102 – 452
= 44100 – 2025
= 42075
APPEARS IN
संबंधित प्रश्न
Find the sum of the following series
3 + 6 + 9 + ... + 96
Find the sum of the following series
51 + 52 + 53 + ... + 92
Find the sum of the following series
1 + 4 + 9 + 16 + ... + 225
Find the sum of the following series
62 + 72 + 82 + ... + 212
Find the sum of the following series
1 + 3 + 5 + ... + 71
If 1 + 2 + 3 + ... + k = 325, then find 13 + 23 + 33 + ... + k3
If 13 + 23 + 33 + ... + k3 = 44100 then find 1 + 2 + 3 + ... + k
How many terms of the series 13 + 23 + 33 + … should be taken to get the sum 14400?
The sum of the cubes of the first n natural numbers is 2025, then find the value of n
Find the sum of the series (23 – 13) + (43 – 33) + (63 – 153) + ... to n terms