Advertisements
Advertisements
प्रश्न
How many terms of the series 13 + 23 + 33 + … should be taken to get the sum 14400?
उत्तर
13 + 23 + 33 + ... + n3 = 14400
`(("n"("n" + 1))/2)^2` = 14400 = (120)2
`("n"("n" + 1))/2 = sqrt(14400)` = 120
n(n + 1) = 240
Method 1:
n2 + n – 240 = 0
n2 + 16n – 15n – 240 = 0
n(n + 16) – 15(n + 16) = 0
(n + 16)(n – 15) = 0
n = – 16, 15
∴ 15 terms to be taken to get the sum 14400.
Method 2:
n2 + n – 240 = 0
n = `(- "b" ± sqrt("b"^2 - 4"ac"))/(2"a")`
= `(-1 ± sqrt(1 - 4 xx 1 xx - 240))/(2 xx 1)`
= `(- 1 ± sqrt(1 + 960))/2`
= `(- 1 ± sqrt(961))/2`
= `(- 1 ± 31)/2`
= `(-1 + 31)/2` or `(-1 - 31)/2`
= `30/2` or `(-32)/2`
n = 15 or – 16
n cannot be – 16
∴ n = 15
APPEARS IN
संबंधित प्रश्न
Find the sum of the following series
1 + 2 + 3 + ... + 60
Find the sum of the following series
3 + 6 + 9 + ... + 96
Find the sum of the following series
103 + 113 + 123 + ... + 203
Find the sum of the following series
1 + 3 + 5 + ... + 71
If 1 + 2 + 3 + ... + k = 325, then find 13 + 23 + 33 + ... + k3
If 13 + 23 + 33 + ... + k3 = 44100 then find 1 + 2 + 3 + ... + k
Rekha has 15 square colour papers of sizes 10 cm,11 cm,12 cm, …, 24 cm. How much area can be decorated with these colour papers?
Find the sum of the series (23 – 13) + (43 – 33) + (63 – 153) + ... to n terms
Find the sum of the series (23 – 13) + (43 – 33) + (63 – 153) + ... to 8 terms
The value of (13 + 23 + 33 + ... + 153) – (1 + 2 + 3 + ... + 15) is