Advertisements
Advertisements
प्रश्न
Find the sum to n term: 0.4 + 0.44 + 0.444 + …
उत्तर
Sn = 0.4 + 0.44 + 0.444 + … upto n terms
Sn = `4/10 + 44/100 + 444/1000 + ... "n term"`
Sn = `4[1/10 + 11/100 + 111/1000 + ... "n term"]`
= `4/9[9/10 + 99/100 + 999/1000 + .... "n term"]`
Sn = `4/9[1 - 1/10 + 1 - 1/100 + 1 - 1/1000 + ... "n term"]`
Sn = `4/9[1 + 1 + 1 + ... "n term" - (1/10 + 1/100 + 1/1000 + ... "n term")]`
Here, a = `1/10, "r" = 1/10, "S"_"n" = ("a"(1 - "r"^"n"))/(1 - "r")`
Sn = `4/9["n" - (1/10(1 - 1/10^"n"))/(1 - 1/10)]`
= `4/9["n" - 1/10 xx 10/9(1 - 1/10^"n")]`
Sn = `4/9"n" - [4/81(1 - 1/10^"n")]`
APPEARS IN
संबंधित प्रश्न
For a G.P., if a = 2, r = `-2/3`, find S6.
For a G.P., if S5 = 1023, r = 4, find a.
For a G.P., if t3 = 20, t6 = 160, find S7.
For a G.P., if t4 = 16, t9 = 512, find S10.
Find the sum to n terms: 3 + 33 + 333 + 3333 + ...
Find the sum to n terms: 0.7 + 0.77 + 0.777 + ...
If `S_n, S_2n, S_3n` are the sum of `n,2n,3n` terms of a G.P. respectively, then verify that
`S_n(S_(3n) - S_(2n)) = (S_(2n) - S_n)^2. `
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = ( S2n - Sn ) 2.
If Sn, S2n, S3n are the sum of n, 2n, and 3n terms of a G.P. respectively, then verify that `S_n (S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = (S2n - Sn)2.
If for a sequence, `t_n = 5^(n-3)/2^(n-3)`, show that the sequence is a G.P. Find its first term and the common ratio.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = (S2n - Sn)2.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n − S2n) = (S2n − Sn)2.
If for a sequence, `t_n = 5^(n-3)/2^(n-3)`, show that the sequence is a G.P. Find its first term and the common ratio.
If Sn , S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn(S3n − S2n) = (S2n − Sn)2
If `S_n, S_(2n), S_(3n)` are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that `S_n (S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = (S2n - Sn)2.
If `S_n, S_(2n), S_(3n)` are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that `S_n(S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.