मराठी

Find the sum to n term: 0.4 + 0.44 + 0.444 + … - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the sum to n term: 0.4 + 0.44 + 0.444 + …

बेरीज

उत्तर

Sn = 0.4 + 0.44 + 0.444 + … upto n terms

Sn = `4/10 + 44/100 + 444/1000 + ... "n term"`

Sn = `4[1/10 + 11/100 + 111/1000 + ... "n term"]`

= `4/9[9/10 + 99/100 + 999/1000 + .... "n term"]`

Sn = `4/9[1 - 1/10 + 1 - 1/100 + 1 - 1/1000 + ...  "n term"]`

Sn = `4/9[1 + 1 + 1 + ... "n term" - (1/10 + 1/100 + 1/1000 + ... "n term")]`

Here, a = `1/10, "r" = 1/10, "S"_"n" = ("a"(1 - "r"^"n"))/(1 - "r")`

Sn = `4/9["n" - (1/10(1 - 1/10^"n"))/(1 - 1/10)]`

= `4/9["n" - 1/10 xx 10/9(1 - 1/10^"n")]`

Sn = `4/9"n" - [4/81(1 - 1/10^"n")]`

shaalaa.com
Sum of the First n Terms of a G.P.
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Sequences and Series - EXERCISE 4.2 [पृष्ठ ५५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
पाठ 4 Sequences and Series
EXERCISE 4.2 | Q 6) i) | पृष्ठ ५५

संबंधित प्रश्‍न

If for a sequence, tn = `(5^("n" - 3))/(2^("n" - 3)`, show that the sequence is a G. P. Find its first term and the common ratio.


For the following G.P.'s, find Sn: 3, 6, 12, 24, ...


For a G.P., if a = 2, r = `-2/3`, find S6.


For a G.P., if S5 = 1023, r = 4, find a.


Find the sum to n terms: 3 + 33 + 333 + 3333 + ...


Find the nth terms of the sequences:  0.2, 0.22, 0.222, …


If S, P, R are the sum, product and sum of the reciprocals of n terms of a G.P. respectively, then verify that `("S"/"R")^"n" = "P"^2`.


If for a sequence `t_n = 5^(n-3) / 2^(n-3),` show that the sequence is a G.P.

Find its first term and the common ratio.


If `S_n, S_2n, S_3n` are the sum of `n,2n,3n` terms of a G.P. respectively, then verify that

`S_n(S_(3n) - S_(2n)) = (S_(2n) - S_n)^2. `


If for a sequence, tn = `(5^(n-3))/(2^(n-3))`, show that the sequence is a G.P. Find its first term and the common ratio.


If Sn, S2n, S3n are the sum of n, 2n, and 3n terms of a G.P. respectively, then verify that `S_n (S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = (S2n - Sn)2.


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n − S2n) = (S2n − Sn)2.


If for a sequence, `"t"_"n" = (5^"n"-3)/(2^"n"-3)`, show that sequence is a G.P.

Find its first term and the common ratio. 


If `S_n, S_(2n), S_(3n)` are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that `S_n (S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = (S2n - Sn)2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×