हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Find the tangent and normal to the following curves at the given points on the curve y = x sin x at (π2,π2) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the tangent and normal to the following curves at the given points on the curve

y = x sin x at `(pi/2, pi/2)`

योग

उत्तर

y = x sin x at `(pi/2, pi/2)`

Differentiating w.r.t. ‘x’

`("d"y)/("d"x)` = x cos x + sin x

Slope of the tangent ‘m’ = `(("d"y)/("d"x))_(((pi/2, pi/2)))`

= `pi cos  pi/2 + sin  pi/2` = 1

Slope of the Normal `- 1/"m"` = – 1

Equation of tangent is

y – y1 = m(x – x1)

⇒ `y - pi/2 = 1(x - pi/2)`

⇒ x – y = 0

Equation of Normal is

y – y1 = `- 1/"m"(x - x_1)`

⇒ `y - pi/2 = -1(x - pi/2)`

⇒ `y - pi/2 = - x + pi/2`

⇒ x + y – π = 0

shaalaa.com
Meaning of Derivatives
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Applications of Differential Calculus - Exercise 7.2 [पृष्ठ १५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 7 Applications of Differential Calculus
Exercise 7.2 | Q 5. (iii) | पृष्ठ १५

संबंधित प्रश्न

A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the average velocity with which the camera falls during the last 2 seconds?


A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the instantaneous velocity of the camera when it hits the ground?


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. At what times the particle changes direction?


If the mass m(x) (in kilograms) of a thin rod of length x (in metres) is given by, m(x) = `sqrt(3x)` then what is the rate of change of mass with respect to the length when it is x = 3 and x = 27 metres


A stone is dropped into a pond causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a constant rate at 2 cm per second. When the radius is 5 cm find the rate of changing of the total area of the disturbed water?


A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?


Find the slope of the tangent to the following curves at the respective given points.

x = a cos3t, y = b sin3t at t = `pi/2`


Find the points on curve y = x3 – 6x2 + x + 3 where the normal is parallel to the line x + y = 1729


Find the tangent and normal to the following curves at the given points on the curve

y = x4 + 2ex at (0, 2)


Find the tangent and normal to the following curves at the given points on the curve

x = cos t, y = 2 sin2t at t = `pi/2`


Find the equation of tangent and normal to the curve given by x – 7 cos t andy = 2 sin t, t ∈ R at any point on the curve


Show that the two curves x2 – y2 = r2 and xy = c2 where c, r are constants, cut orthogonally


Choose the correct alternative:

The volume of a sphere is increasing in volume at the rate of 3π cm3/ sec. The rate of change of its radius when radius is `1/2` cm


Choose the correct alternative:

A balloon rises straight up at 10 m/s. An observer is 40 m away from the spot where the balloon left the ground. The rate of change of the balloon’s angle of elevation in radian per second when the balloon is 30 metres above the ground


Choose the correct alternative:

Find the point on the curve 6y = x3 + 2 at which y-coordinate changes 8 times as fast as x-coordinate is


Choose the correct alternative:

The abscissa of the point on the curve f(x) = `sqrt(8 - 2x)` at which the slope of the tangent is – 0.25?


Choose the correct alternative:

The slope of the line normal to the curve f(x) = 2 cos 4x at x = `pi/12` is


Choose the correct alternative:

Angle between y2 = x and x2 = y at the origin is


Choose the correct alternative:

The maximum slope of the tangent to the curve y = ex sin x, x ∈ [0, 2π] is at


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×