मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the tangent and normal to the following curves at the given points on the curve y = x sin x at (π2,π2) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the tangent and normal to the following curves at the given points on the curve

y = x sin x at `(pi/2, pi/2)`

बेरीज

उत्तर

y = x sin x at `(pi/2, pi/2)`

Differentiating w.r.t. ‘x’

`("d"y)/("d"x)` = x cos x + sin x

Slope of the tangent ‘m’ = `(("d"y)/("d"x))_(((pi/2, pi/2)))`

= `pi cos  pi/2 + sin  pi/2` = 1

Slope of the Normal `- 1/"m"` = – 1

Equation of tangent is

y – y1 = m(x – x1)

⇒ `y - pi/2 = 1(x - pi/2)`

⇒ x – y = 0

Equation of Normal is

y – y1 = `- 1/"m"(x - x_1)`

⇒ `y - pi/2 = -1(x - pi/2)`

⇒ `y - pi/2 = - x + pi/2`

⇒ x + y – π = 0

shaalaa.com
Meaning of Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Applications of Differential Calculus - Exercise 7.2 [पृष्ठ १५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 7 Applications of Differential Calculus
Exercise 7.2 | Q 5. (iii) | पृष्ठ १५

संबंधित प्रश्‍न

A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the average velocity between t = 3 and t = 6 seconds


A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the instantaneous velocities at t = 3 and t = 6 seconds


A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. How long does the camera fall before it hits the ground?


A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the average velocity with which the camera falls during the last 2 seconds?


A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the instantaneous velocity of the camera when it hits the ground?


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. At what times the particle changes direction?


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the total distance travelled by the particle in the first 4 seconds


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the particle’s acceleration each time the velocity is zero


If the volume of a cube of side length x is v = x3. Find the rate of change of the volume with respect to x when x = 5 units


A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?


A police jeep, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east. The police determine with a radar that the distance between them and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the instant of measurement, what is the speed of the car?


Find the points on curve y = x3 – 6x2 + x + 3 where the normal is parallel to the line x + y = 1729


Find the tangent and normal to the following curves at the given points on the curve

y = x2 – x4 at (1, 0)


Find the tangent and normal to the following curves at the given points on the curve

y = x4 + 2ex at (0, 2)


Find the equations of the tangents to the curve y = 1 + x3 for which the tangent is orthogonal with the line x + 12y = 12


Find the angle between the rectangular hyperbola xy = 2 and the parabola x2 + 4y = 0


Show that the two curves x2 – y2 = r2 and xy = c2 where c, r are constants, cut orthogonally


Choose the correct alternative:

The volume of a sphere is increasing in volume at the rate of 3π cm3/ sec. The rate of change of its radius when radius is `1/2` cm


Choose the correct alternative:

Angle between y2 = x and x2 = y at the origin is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×