मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water - Mathematics

Advertisements
Advertisements

प्रश्न

A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?

बेरीज

उत्तर


From the figure `"r"/"h" = 5/12`

r = `(5"h")/12`

Given rate of change of volume `"dV"/"dt"` = 10

When h = 8 to find `"dh"/"dt"`

Volume of cone V = `1/3 pi"r"^2"h"`

V = `pi/3((5"h")/12)^2"h"`

V = `pi/3((25"h"^3)/144)`

= `(25pi)/432  "h"^3`

DIfferentiating w.r.t. 't'

`"dV"/"dt" = (25pi)/432 (3"h")^2 "dh"/"dt"`

10 = `(25pi)/432 (3(8)^2) "dh"/"dt"`  ......[∵ Given h = 8]

∴ `"dh"/"dt" = 1/pi (432 xx 10)/(3 xx 25 xx 64)`

= `4320/(4800pi)`

= `0.9/pi`

= 9/(10pi)`

The depth of the water increasing at the rate of `9/(10pi)` m/min

shaalaa.com
Meaning of Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Applications of Differential Calculus - Exercise 7.1 [पृष्ठ ८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 7 Applications of Differential Calculus
Exercise 7.1 | Q 8 | पृष्ठ ८

संबंधित प्रश्‍न

A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the average velocity between t = 3 and t = 6 seconds


A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. How long does the camera fall before it hits the ground?


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the particle’s acceleration each time the velocity is zero


If the mass m(x) (in kilograms) of a thin rod of length x (in metres) is given by, m(x) = `sqrt(3x)` then what is the rate of change of mass with respect to the length when it is x = 3 and x = 27 metres


A stone is dropped into a pond causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a constant rate at 2 cm per second. When the radius is 5 cm find the rate of changing of the total area of the disturbed water?


A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5 km from a straight shoreline. How fast is the beam moving along the shoreline when it makes an angle of 45° with the shore?


A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall. How fast is the top of the ladder moving down the wall?


A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall, at what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing?


A police jeep, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east. The police determine with a radar that the distance between them and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the instant of measurement, what is the speed of the car?


Find the tangent and normal to the following curves at the given points on the curve

y = x2 – x4 at (1, 0)


Find the tangent and normal to the following curves at the given points on the curve

y = x4 + 2ex at (0, 2)


Find the equations of the tangents to the curve y = 1 + x3 for which the tangent is orthogonal with the line x + 12y = 12


Find the angle between the rectangular hyperbola xy = 2 and the parabola x2 + 4y = 0


Show that the two curves x2 – y2 = r2 and xy = c2 where c, r are constants, cut orthogonally


Choose the correct alternative:

The position of a particle moving along a horizontal line of any time t is given by s(t) = 3t2 – 2t – 8. The time at which the particle is at rest is


Choose the correct alternative:

A stone is thrown, up vertically. The height reaches at time t seconds is given by x = 80t – 16t2. The stone reaches the maximum! height in time t seconds is given by


Choose the correct alternative:

Find the point on the curve 6y = x3 + 2 at which y-coordinate changes 8 times as fast as x-coordinate is


Choose the correct alternative:

The slope of the line normal to the curve f(x) = 2 cos 4x at x = `pi/12` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×