मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall. How - Mathematics

Advertisements
Advertisements

प्रश्न

A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall. How fast is the top of the ladder moving down the wall?

बेरीज

उत्तर

Let the height of the wall where the ladder touches are ‘y’ m.

The bottom of the ladder is at a distance of ‘x’ m from the wall.

Given x = 8, `("d"x)/"dt"` = 5

x2 + y2 = 172

Pythagoras Theorem

y2 = 172 – x2

= 289 – 64

= 225

∴ y = 15

Differentiating w.r.t. ‘t’

`2x ("d"x)/"dt" + 2y ("d"y)/"dt"` = 0  .....(÷ 2)

`x ("d"x)/"dt" + y ("d"y)/"dt"` = 0

`8(5) + 15 ("d"y)/"dt"` = 0

∴ `("d"y)/"dt" =  40/15`

= `- 8/5`

The top of the ladder is moving down the wall at the rate of `8/3` m/sec

shaalaa.com
Meaning of Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Applications of Differential Calculus - Exercise 7.1 [पृष्ठ ८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 7 Applications of Differential Calculus
Exercise 7.1 | Q 9. (i) | पृष्ठ ८

संबंधित प्रश्‍न

A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the instantaneous velocities at t = 3 and t = 6 seconds


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the particle’s acceleration each time the velocity is zero


If the volume of a cube of side length x is v = x3. Find the rate of change of the volume with respect to x when x = 5 units


If the mass m(x) (in kilograms) of a thin rod of length x (in metres) is given by, m(x) = `sqrt(3x)` then what is the rate of change of mass with respect to the length when it is x = 3 and x = 27 metres


A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5 km from a straight shoreline. How fast is the beam moving along the shoreline when it makes an angle of 45° with the shore?


A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall, at what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing?


Find the slope of the tangent to the following curves at the respective given points.

y = x4 + 2x2 – x at x = 1


Find the tangent and normal to the following curves at the given points on the curve

y = x4 + 2ex at (0, 2)


Find the tangent and normal to the following curves at the given points on the curve

y = x sin x at `(pi/2, pi/2)`


Find the tangent and normal to the following curves at the given points on the curve

x = cos t, y = 2 sin2t at t = `pi/2`


Find the equation of tangent and normal to the curve given by x – 7 cos t andy = 2 sin t, t ∈ R at any point on the curve


Find the angle between the rectangular hyperbola xy = 2 and the parabola x2 + 4y = 0


Choose the correct alternative:

The position of a particle moving along a horizontal line of any time t is given by s(t) = 3t2 – 2t – 8. The time at which the particle is at rest is


Choose the correct alternative:

A stone is thrown, up vertically. The height reaches at time t seconds is given by x = 80t – 16t2. The stone reaches the maximum! height in time t seconds is given by


Choose the correct alternative:

Find the point on the curve 6y = x3 + 2 at which y-coordinate changes 8 times as fast as x-coordinate is


Choose the correct alternative:

Angle between y2 = x and x2 = y at the origin is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×