Advertisements
Advertisements
प्रश्न
Find the tangent and normal to the following curves at the given points on the curve
x = cos t, y = 2 sin2t at t = `pi/2`
उत्तर
x = cos t, y = 2 sin2t at t = `pi/2`
At t = `pi/3`, x= cos `pi/3 = 1/2`
At t = `pi/3`, y = `2sin^2 pi/3 = 2(3/4) = 3/2`
Point is `(1/2, 3/2)`
Now x = cos t y = 2 sin2t
Differentiating w.r.t. ‘t’,
`("d"x)/("d"y) = - sin "t"`
`("d"y)/"dt"` = 4 sin t cos t
Slope of the tangent
m = `("d"y)/("d"x)`
= `(("d"y)/("dt"))/(("d"x)/("dt"))`
= `(4 sin "t" cos "t")/(- sin "t")`
= – 4 cos t
`(("d"y)/("d"x))_(("t" = pi/3)) = - 4 cos pi/3 = - 2`
Slope of the Normal `- 1/"m" = 1/2`
Equation of tangent is
y – y1 = m(x – x1)
⇒ `y - 3/2 = - 2(x - 1/2)`
⇒ 2y – 3 = – 4x + 2
⇒ 4x + 2y – 5 = 0
Equation of Normal is
`y - y_1 = - 1/"m"(x - x_1)`
⇒ `y - 3/2 = 1/2(x - 1/2)`
⇒ 2(2y – 3) = 2x – 1
⇒ 4y – 6 = 2x – 1
⇒ 2x – 4y + 5 = 0
APPEARS IN
संबंधित प्रश्न
A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the instantaneous velocities at t = 3 and t = 6 seconds
A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the average velocity with which the camera falls during the last 2 seconds?
A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the instantaneous velocity of the camera when it hits the ground?
A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. At what times the particle changes direction?
A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the particle’s acceleration each time the velocity is zero
If the mass m(x) (in kilograms) of a thin rod of length x (in metres) is given by, m(x) = `sqrt(3x)` then what is the rate of change of mass with respect to the length when it is x = 3 and x = 27 metres
A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5 km from a straight shoreline. How fast is the beam moving along the shoreline when it makes an angle of 45° with the shore?
A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?
Find the slope of the tangent to the following curves at the respective given points.
x = a cos3t, y = b sin3t at t = `pi/2`
Find the point on the curve y = x2 – 5x + 4 at which the tangent is parallel to the line 3x + y = 7
Find the tangent and normal to the following curves at the given points on the curve
y = x2 – x4 at (1, 0)
Find the equations of the tangents to the curve y = 1 + x3 for which the tangent is orthogonal with the line x + 12y = 12
Find the equation of tangent and normal to the curve given by x – 7 cos t andy = 2 sin t, t ∈ R at any point on the curve
Choose the correct alternative:
The volume of a sphere is increasing in volume at the rate of 3π cm3/ sec. The rate of change of its radius when radius is `1/2` cm
Choose the correct alternative:
A stone is thrown, up vertically. The height reaches at time t seconds is given by x = 80t – 16t2. The stone reaches the maximum! height in time t seconds is given by
Choose the correct alternative:
Angle between y2 = x and x2 = y at the origin is