मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the instantaneous velocity of the camera when it hits the ground? - Mathematics

Advertisements
Advertisements

प्रश्न

A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the instantaneous velocity of the camera when it hits the ground?

बेरीज

उत्तर

f(t) = 16t2

f'(t) = 32t

f'(t) at t = 5 = 32(5)

= 160 ft/sec

shaalaa.com
Meaning of Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Applications of Differential Calculus - Exercise 7.1 [पृष्ठ ८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 7 Applications of Differential Calculus
Exercise 7.1 | Q 2. (iii) | पृष्ठ ८

संबंधित प्रश्‍न

A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the instantaneous velocities at t = 3 and t = 6 seconds


A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the average velocity with which the camera falls during the last 2 seconds?


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. At what times the particle changes direction?


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the total distance travelled by the particle in the first 4 seconds


Find the slope of the tangent to the following curves at the respective given points.

y = x4 + 2x2 – x at x = 1


Find the points on curve y = x3 – 6x2 + x + 3 where the normal is parallel to the line x + y = 1729


Find the points on the curve y2 – 4xy = x2 + 5 for which the tangent is horizontal


Find the tangent and normal to the following curves at the given points on the curve

y = x4 + 2ex at (0, 2)


Find the tangent and normal to the following curves at the given points on the curve

x = cos t, y = 2 sin2t at t = `pi/2`


Find the equations of the tangents to the curve y = `- (x + 1)/(x - 1)` which are parallel to the line x + 2y = 6


Find the equation of tangent and normal to the curve given by x – 7 cos t andy = 2 sin t, t ∈ R at any point on the curve


Choose the correct alternative:

The position of a particle moving along a horizontal line of any time t is given by s(t) = 3t2 – 2t – 8. The time at which the particle is at rest is


Choose the correct alternative:

A stone is thrown, up vertically. The height reaches at time t seconds is given by x = 80t – 16t2. The stone reaches the maximum! height in time t seconds is given by


Choose the correct alternative:

The abscissa of the point on the curve f(x) = `sqrt(8 - 2x)` at which the slope of the tangent is – 0.25?


Choose the correct alternative:

Angle between y2 = x and x2 = y at the origin is


Choose the correct alternative:

The maximum slope of the tangent to the curve y = ex sin x, x ∈ [0, 2π] is at


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×