मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the total distance travelled by the particle in the first 4 seconds - Mathematics

Advertisements
Advertisements

प्रश्न

A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the total distance travelled by the particle in the first 4 seconds

बेरीज

उत्तर

The distance travelled in the first 4 seconds is

|s(0) – s(1)| + |s(1) – s(2)| + |s(2) – s(3)| + |s(3) – s(4)|

Here, s(t) = 2t3 – 9t2 + 12t – 4

s(0) = – 4

s(1) = 1

s(2) = 0

s(3) = 5

s(4) = 28

∴ Distance travelled in the first 4 seconds

= |-4 – 1| + |1 – 0| + |0 – 5| + |5 – 28|

= 5 + 1 + 5 + 23

= 34 m

shaalaa.com
Meaning of Derivatives
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Applications of Differential Calculus - Exercise 7.1 [पृष्ठ ८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 7 Applications of Differential Calculus
Exercise 7.1 | Q 3. (ii) | पृष्ठ ८

संबंधित प्रश्‍न

A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the instantaneous velocities at t = 3 and t = 6 seconds


A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. How long does the camera fall before it hits the ground?


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the particle’s acceleration each time the velocity is zero


If the volume of a cube of side length x is v = x3. Find the rate of change of the volume with respect to x when x = 5 units


If the mass m(x) (in kilograms) of a thin rod of length x (in metres) is given by, m(x) = `sqrt(3x)` then what is the rate of change of mass with respect to the length when it is x = 3 and x = 27 metres


A stone is dropped into a pond causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a constant rate at 2 cm per second. When the radius is 5 cm find the rate of changing of the total area of the disturbed water?


A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5 km from a straight shoreline. How fast is the beam moving along the shoreline when it makes an angle of 45° with the shore?


A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall, at what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing?


Find the tangent and normal to the following curves at the given points on the curve

y = x4 + 2ex at (0, 2)


Find the tangent and normal to the following curves at the given points on the curve

y = x sin x at `(pi/2, pi/2)`


Show that the two curves x2 – y2 = r2 and xy = c2 where c, r are constants, cut orthogonally


Choose the correct alternative:

Find the point on the curve 6y = x3 + 2 at which y-coordinate changes 8 times as fast as x-coordinate is


Choose the correct alternative:

The tangent to the curve y2 – xy + 9 = 0 is vertical when


Choose the correct alternative:

Angle between y2 = x and x2 = y at the origin is


Choose the correct alternative:

The maximum slope of the tangent to the curve y = ex sin x, x ∈ [0, 2π] is at


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×