English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the instantaneous velocity of the camera when it hits the ground? - Mathematics

Advertisements
Advertisements

Question

A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the instantaneous velocity of the camera when it hits the ground?

Sum

Solution

f(t) = 16t2

f'(t) = 32t

f'(t) at t = 5 = 32(5)

= 160 ft/sec

shaalaa.com
Meaning of Derivatives
  Is there an error in this question or solution?
Chapter 7: Applications of Differential Calculus - Exercise 7.1 [Page 8]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 7 Applications of Differential Calculus
Exercise 7.1 | Q 2. (iii) | Page 8

RELATED QUESTIONS

A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the average velocity with which the camera falls during the last 2 seconds?


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. At what times the particle changes direction?


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the particle’s acceleration each time the velocity is zero


A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5 km from a straight shoreline. How fast is the beam moving along the shoreline when it makes an angle of 45° with the shore?


A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?


A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall. How fast is the top of the ladder moving down the wall?


Find the slope of the tangent to the following curves at the respective given points.

x = a cos3t, y = b sin3t at t = `pi/2`


Find the point on the curve y = x2 – 5x + 4 at which the tangent is parallel to the line 3x + y = 7


Find the points on the curve y2 – 4xy = x2 + 5 for which the tangent is horizontal


Find the tangent and normal to the following curves at the given points on the curve

y = x sin x at `(pi/2, pi/2)`


Find the tangent and normal to the following curves at the given points on the curve

x = cos t, y = 2 sin2t at t = `pi/2`


Find the equations of the tangents to the curve y = 1 + x3 for which the tangent is orthogonal with the line x + 12y = 12


Find the equation of tangent and normal to the curve given by x – 7 cos t andy = 2 sin t, t ∈ R at any point on the curve


Choose the correct alternative:

A balloon rises straight up at 10 m/s. An observer is 40 m away from the spot where the balloon left the ground. The rate of change of the balloon’s angle of elevation in radian per second when the balloon is 30 metres above the ground


Choose the correct alternative:

The abscissa of the point on the curve f(x) = `sqrt(8 - 2x)` at which the slope of the tangent is – 0.25?


Choose the correct alternative:

The slope of the line normal to the curve f(x) = 2 cos 4x at x = `pi/12` is


Choose the correct alternative:

Angle between y2 = x and x2 = y at the origin is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×